GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Free Radical Biology and Medicine, Elsevier BV, Vol. 180 ( 2022-02), p. 210-219
    Type of Medium: Online Resource
    ISSN: 0891-5849
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1483653-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2023
    In:  Free Radical Biology and Medicine Vol. 201 ( 2023-05), p. 61-
    In: Free Radical Biology and Medicine, Elsevier BV, Vol. 201 ( 2023-05), p. 61-
    Type of Medium: Online Resource
    ISSN: 0891-5849
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1483653-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecules, MDPI AG, Vol. 27, No. 14 ( 2022-07-15), p. 4519-
    Abstract: Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r 〉 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Life Vol. 13, No. 2 ( 2023-01-17), p. 257-
    In: Life, MDPI AG, Vol. 13, No. 2 ( 2023-01-17), p. 257-
    Abstract: Gas plasma is a medical technology with antimicrobial properties. Its main mode of action is oxidative damage via reactive species production. The clinical efficacy of gas plasma-reduced bacterial burden has been shown to be hampered in some cases. Since the reactive species profile produced by gas plasma jets, such as the kINPen used in this study, are thought to determine antimicrobial efficacy, we screened an array of feed gas settings in different types of bacteria. Antimicrobial analysis was performed by single-cell analysis using flow cytometry. We identified humidified feed gas to mediate significantly greater toxicity compared to dry argon and many other gas plasma conditions. The results were confirmed by inhibition zone analysis on gas-plasma-treated microbial lawns grown on agar plates. Our results may have vital implications for clinical wound management and potentially enhance antimicrobial efficacy of medical gas plasma therapy in patient treatment.
    Type of Medium: Online Resource
    ISSN: 2075-1729
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662250-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Applied Sciences Vol. 10, No. 18 ( 2020-09-15), p. 6419-
    In: Applied Sciences, MDPI AG, Vol. 10, No. 18 ( 2020-09-15), p. 6419-
    Abstract: Proteins succumb to numerous post-translational modifications (PTMs). These relate to enzymatic or non-enzymatic reactions taking place in either the intracellular or extracellular compartment. While intracellular oxidative changes are mainly due to redox stress, extracellular PTMs may be induced in an inflammatory micro milieu that is rich in reactive species. The increasing recognition of oxidative modifications as a causing agent or side-effect of pathophysiological states and diseases puts oxidative PTMS (oxPTMs) into the spotlight of inflammation research. Pathological hyper-modification of proteins can lead to accumulation, aggregation, cell stress, altered antigenic peptides, and damage-associated molecular pattern (DAMP)-like recognition by host immunity. Such processes are linked to cardiovascular disease and autoinflammation. At the same time, a detailed understanding of the mechanisms governing inflammatory responses to oxPTMs may capitalize on new therapeutic routes for enhancing adaptive immune responses as needed, for instance, in oncology. We here summarize some of the latest developments of oxPTMs in disease diagnosis and therapy. Potential target proteins and upcoming technologies, such as gas plasmas, are outlined for future research that may aid in identifying the molecular basis of immunogenic vs. tolerogenic oxPTMs.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2021
    In:  IEEE Transactions on Radiation and Plasma Medical Sciences Vol. 5, No. 3 ( 2021-5), p. 398-411
    In: IEEE Transactions on Radiation and Plasma Medical Sciences, Institute of Electrical and Electronics Engineers (IEEE), Vol. 5, No. 3 ( 2021-5), p. 398-411
    Type of Medium: Online Resource
    ISSN: 2469-7311 , 2469-7303
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2021
    detail.hit.zdb_id: 2867672-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Applied Physics, AIP Publishing, Vol. 129, No. 5 ( 2021-02-07)
    Abstract: Cold physical plasma is a new anticancer agent. Various prototypes and a few certified devices have been developed during recent years. However, the large number of metastases disseminated into the peritoneal cavity is challenging to target directly with this emerging technology. Plasma-oxidized liquids containing tumor-toxic reactive species, in turn, are promising adjuvants in chemotherapeutic regimens. Yet, the generation of larger volumes of such liquid currently hinders its further exploration for practical application. In this study, the anticancer effect of oxidized saline generated using a spark discharge was investigated using CT26 colorectal cancer cells in vitro and in vivo and compared against oxidized saline generated by the well-investigated medical plasma jet kINPen. The reactive species deposition, as well as the storability of the liquid, was investigated. In a murine, syngeneic, orthotopic model of colorectal peritoneal carcinomatosis, the spark discharge-oxidized saline reduced the tumor burden to a lower extent when compared to the kINPen. However, and despite the lower therapeutic efficacy, the former had profound immunomodulatory effects on the levels of several peritoneal cytokines, as indicated by the marked decrease of interferon-γ, interleukin (IL)-2, IL-6, IL-10, and IL-17F. The effect observed with the kINPen on these mostly T-cell-related cytokines was less pronounced. This suggests that the spark discharge-oxidized saline unintendedly decreased the T-cell activity, presumably because of its low pH (2.7). Collectively, our results are vital in understanding the plasma-liquid-chemistry for use in oncology and will help design more optimal liquids for further exploration in research and future surgical applications.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-05-23)
    Abstract: Cytokine-induced signal transduction is executed by natural biological switches, which among many others control immune-related processes. Here, we show that synthetic cytokine receptors (SyCyRs) can induce cytokine signaling using non-physiological ligands. High-affinity GFP- and mCherry-nanobodies were fused to transmembrane and intracellular domains of the IL-6/IL-11 and IL-23 cytokine receptors gp130 and IL-12Rβ1/IL-23R, respectively. Homo- and heterodimeric GFP:mCherry fusion proteins as synthetic cytokine-like ligands were able to induce canonical signaling in vitro and in vivo. Using SyCyR ligands, we show that IL-23 receptor homodimerization results in its activation and IL-23-like signal transduction. Moreover, trimeric receptor assembly induces trans-phosphorylation among cytokine receptors with associated Janus kinases. The SyCyR technology allows biochemical analyses of transmembrane receptor signaling in vitro and in vivo, cell-specific activation through SyCyR ligands using transgenic animals and possible therapeutic regimes involving non-physiological targets during immunotherapy.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Advanced Science, Wiley, Vol. 10, No. 28 ( 2023-10)
    Abstract: Strategies to improve activity and selectivity are major goals in oncological drug development. Medical gas plasma therapy has been subject to intense research in dermatooncology recently. Based on partial gas ionization, this approach is exceptional in generating a variety of reactive oxygen species simultaneously that can be applied locally at the tumor side. It is hypothesized that combined gas plasma treatment can potentiate drug responses in the treatment of melanoma. Using a plasma jet approved as medical device in Europe, a systematic screening of 46 mitochondria‐targeted drugs identifies five agents synergizing in vitro and in vivo. Increased intratumoral leucocyte infiltration points to immunomodulatory aspects of the treatment, motivating to investigate responses to immune checkpoint blockade in combination with plasma. Tumor growth is monitored based on bioluminescent imaging, and single‐cell suspensions are retrieved from each tumor to characterize tumor‐infiltrating leucocytes using multicolor flow cytometry. Gene expression profiling is done using a validated NanoString panel targeting 770 genes specifically designed for immuno‐oncological research. Cell type abundancies are characterized from bulk RNA samples using the CIBERSORT computational framework. Collectively, the results indicate that local application of medical gas plasma technology synergizes with mitochondria‐targeted drugs and anti‐PD1 checkpoint therapy in treating melanoma.
    Type of Medium: Online Resource
    ISSN: 2198-3844 , 2198-3844
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2808093-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancers, MDPI AG, Vol. 12, No. 12 ( 2020-11-30), p. 3575-
    Abstract: Skin cancers have the highest prevalence of all human cancers, with the most lethal forms being squamous cell carcinoma and malignant melanoma. Besides the conventional local treatment approaches like surgery and radiotherapy, cold physical plasmas are emerging anticancer tools. Plasma technology is used as a therapeutic agent by generating reactive oxygen species (ROS). Evidence shows that inflammation and adaptive immunity are involved in cancer-reducing effects of plasma treatment, but the role of innate immune cells is still unclear. Natural killer (NK)-cells interact with target cells via activating and inhibiting surface receptors and kill in case of dominating activating signals. In this study, we investigated the effect of cold physical plasma (kINPen) on two skin cancer cell lines (A375 and A431), with non-malignant HaCaT keratinocytes as control, and identified a plasma treatment time-dependent toxicity that was more pronounced in the cancer cells. Plasma treatment also modulated the expression of activating and inhibiting receptors more profoundly in skin cancer cells compared to HaCaT cells, leading to significantly higher NK-cell killing rates in the tumor cells. Together with increased pro-inflammatory mediators such as IL-6 and IL-8, we conclude that plasma treatment spurs stress responses in skin cancer cells, eventually augmenting NK-cell activity.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...