GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Applied Polymer Science Vol. 136, No. 17 ( 2019-05-05)
    In: Journal of Applied Polymer Science, Wiley, Vol. 136, No. 17 ( 2019-05-05)
    Abstract: In this study, the aging‐induced embrittlement of three polymer glasses is investigated using a previously developed hybrid experimental–numerical method. The evolution of yield stress of unnotched tensile bars upon aging is coupled to the evolution of embrittlement of notched tensile bars using a numerical model combined with a critical hydrostatic stress criterion that determines the onset of failure. The time‐to‐embrittlement of notched tensile bars with a different notch geometry is predicted and in good agreement with the experimentally determined value. Next to that, the approach is extended to three polysulfone polymers, and it is shown that the value of the critical hydrostatic stress correlates well with the polymers entanglement density: : polymers with a denser entangled network display higher values, that is, a higher resistance against incipient cavitation. © 2019 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 47373.
    Type of Medium: Online Resource
    ISSN: 0021-8995 , 1097-4628
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1491105-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Polymer Science Part B: Polymer Physics Vol. 57, No. 19 ( 2019-10), p. 1300-1314
    In: Journal of Polymer Science Part B: Polymer Physics, Wiley, Vol. 57, No. 19 ( 2019-10), p. 1300-1314
    Abstract: This study focuses on the prediction of long‐term failure of glassy polymers under static or cyclic loading conditions, including the role of stress‐accelerated progressive aging. Progressive physical aging plays a dominant role in a polymer's performance under prolonged loading conditions, and to obtain accurate predictions of failure, its effect has to be considered. First, the aging kinetics, as influenced by temperature and stress history, are studied extensively. Similar to an elevated temperature, the application of a stress (below the yield stress) activates the aging process, and as a result, the yield stress will evolve faster in time. The activation by stress appears to be limited; at some stress level, the activation stagnates and is followed by rejuvenation. This evolution is captured in a model by introducing a state parameter, which describes the thermodynamic state of the material and is directly linked to the yield stress. With the aging kinetics included in the model, an accurate prediction of the failure time for cyclic loading conditions is obtained. For static loading conditions, however, the effect of physical aging is overestimated because of the stagnation of the activation by stress. It appears that there are marked differences in the stress level where stagnation and subsequent rejuvenation occur for a cyclic or static load. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57 , 1300–1314
    Type of Medium: Online Resource
    ISSN: 0887-6266 , 1099-0488
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1473448-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2019
    In:  Journal of Polymer Science Part B: Polymer Physics Vol. 57, No. 15 ( 2019-08), p. 1001-1013
    In: Journal of Polymer Science Part B: Polymer Physics, Wiley, Vol. 57, No. 15 ( 2019-08), p. 1001-1013
    Abstract: In this study, the rate‐ and temperature‐dependent strain hardening and the Bauschinger effect is studied for three glassy polymers. It appeared that for all materials, an equal distribution of elastic and viscous hardening was necessary to accurately predict the Bauschinger effect, as well as the rate‐ and temperature‐dependent strain hardening response. As for the elastic contribution, the viscous contribution appears to increase with an increase in entanglement network density. Investigating the effect of temperature on the Bauschinger effect revealed that at elevated temperatures the model predictions are not accurately enough. It is shown that this is caused by the magnitude of the elastic hardening contribution; to improve the predictions, a temperature‐dependent elastic contribution is necessary. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1001–1013
    Type of Medium: Online Resource
    ISSN: 0887-6266 , 1099-0488
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1473448-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...