GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genetics, Oxford University Press (OUP), Vol. 149, No. 2 ( 1998-06-01), p. 523-535
    Abstract: Accumulating evidence indicates that individual members of the phytochrome family of photoreceptors have differential but interactive roles in controlling plant responses to light. To investigate possible cross-regulation of these receptors, we have identified monoclonal antibodies that specifically detect each of the five Arabidopsis phytochromes, phyA to phyE (phytochrome A holoprotein; PHYA, phytochrome A apoprotein; PHYA, phytochrome A gene; phyA, mutant allele of phytochrome A gene), on immunoblots and have used them to analyze the effects of phyA and phyB null mutations on the levels of all five family members. In phyB mutants, but not in phyA mutants, a four- to six-fold reduction in the level of phyC is observed in tissues grown either in the dark or in the light. Coordinate expression of phyB and phyC is induced in the phyB mutant background by the presence of a complementing PHYB transgene. However, in transgenic lines that overexpress phyB 15- to 20-fold, phyC is not similarly overexpressed. In these overexpressor lines, the levels of phyA, phyC, and phyD are increased two- to four-fold over normal in light-grown but not dark-grown seedlings. These observations indicate that molecular mechanisms for coordination or cross-regulation of phytochrome levels are active in Arabidopsis and have implications for the interpretation of phytochrome mutants and overexpressor lines.
    Type of Medium: Online Resource
    ISSN: 1943-2631
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 1998
    detail.hit.zdb_id: 1477228-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2002
    In:  Plant Physiology Vol. 130, No. 1 ( 2002-09-01), p. 442-456
    In: Plant Physiology, Oxford University Press (OUP), Vol. 130, No. 1 ( 2002-09-01), p. 442-456
    Abstract: Using monoclonal antibodies specific for each apoprotein and full-length purified apoprotein standards, the levels of the five Arabidopsis phytochromes and their patterns of expression in seedlings and mature plants and under different light conditions have been characterized. Phytochrome levels are normalized to the DNA content of the various tissue extracts to approximate normalization to the number of cells in the tissue. One phytochrome, phytochrome A, is highly light labile. The other four phytochromes are much more light stable, although among these, phytochromes B and C are reduced 4- to 5-fold in red- or white-light-grown seedlings compared with dark-grown seedlings. The total amount of extractable phytochrome is 23-fold lower in light-grown than dark-grown tissues, and the percent ratios of the five phytochromes, A:B:C:D:E, are measured as 85:10:2:1.5:1.5 in etiolated seedlings and 5:40:15:15:25 in seedlings grown in continuous white light. The four light-stable phytochromes are present at nearly unchanging levels throughout the course of development of mature rosette and reproductive-stage plants and are present in leaves, stems, roots, and flowers. Phytochrome protein expression patterns over the course of seed germination and under diurnal and circadian light cycles are also characterized. Little cycling in response to photoperiod is observed, and this very low amplitude cycling of some phytochrome proteins is out of phase with previously reported cycling ofPHY mRNA levels. These studies indicate that, with the exception of phytochrome A, the family of phytochrome photoreceptors in Arabidopsis constitutes a quite stable and very broadly distributed array of sensory molecules.
    Type of Medium: Online Resource
    ISSN: 1532-2548 , 0032-0889
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2002
    detail.hit.zdb_id: 2004346-6
    detail.hit.zdb_id: 208914-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Plant Journal, Wiley, Vol. 5, No. 2 ( 1994-02), p. 261-272
    Type of Medium: Online Resource
    ISSN: 0960-7412 , 1365-313X
    Language: English
    Publisher: Wiley
    Publication Date: 1994
    detail.hit.zdb_id: 2020961-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 31 ( 2004-08-03), p. 11500-11505
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 31 ( 2004-08-03), p. 11500-11505
    Abstract: Coimmunoprecipitation of members of the phytochrome red/farred photoreceptor family from plant extracts has been used to analyze their heteromeric binding interactions. Phytochrome (phy)B or phyD apoproteins with six myc epitopes fused to their N termini are biologically active when expressed in Arabidopsis . Immunoprecipitation of either of these tagged proteins from seedling extracts coprecipitates additional type II phytochromes: six myc (myc 6 )-phyB coprecipitates phyC-phyE; and myc 6 -phyD coprecipitates phyB and phyE. No interaction of the epitope-tagged proteins with type I phyA was detected. Gel filtration chromatography shows that all five of the Arabidopsis phytochromes are present in seedlings as dimers, and that the heteromeric type II phytochrome complexes migrate at molecular masses characteristic of heterodimers. Similar levels of heterodimer formation are observed in extracts of dark-grown seedlings, where the phytochromes are cytosolic, and light-grown seedlings, where they are predominantly nuclear. These findings indicate that Arabidopsis , which until now has been thought to contain five homodimeric forms of phytochrome, in fact contains multiple species of both homodimeric and heterodimeric phytochromes. The conservation of the phytochrome family throughout angiosperms suggests that heterodimeric red/far-red receptors may be present in many flowering plants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Plant Cell, Oxford University Press (OUP), Vol. 21, No. 3 ( 2009-04-28), p. 786-799
    Abstract: Phytochromes are dimeric chromoproteins that regulate plant responses to red (R) and far-red (FR) light. The Arabidopsis thaliana genome encodes five phytochrome apoproteins: type I phyA mediates responses to FR, and type II phyB–phyE mediate shade avoidance and classical R/FR-reversible responses. In this study, we describe the complete in vivo complement of homodimeric and heterodimeric type II phytochromes. Unexpectedly, phyC and phyE do not homodimerize and are present in seedlings only as heterodimers with phyB and phyD. Roles in light regulation of hypocotyl length, leaf area, and flowering time are demonstrated for heterodimeric phytochromes containing phyC or phyE. Heterodimers of phyC and chromophoreless phyB are inactive, indicating that phyC subunits require spectrally intact dimer partners to be active themselves. Consistent with the obligate heterodimerization of phyC and phyE, phyC is made unstable by removal of its phyB binding partner, and overexpression of phyE results in accumulation of phyE monomers. Following a pulse of red light, phyA, phyB, phyC, and phyD interact in vivo with the PHYTOCHROME INTERACTING FACTOR3 basic helix-loop-helix transcription factor, and this interaction is FR reversible. Therefore, most or all of the type I and type II phytochromes, including heterodimeric forms, appear to function through PIF-mediated pathways. These findings link an unanticipated diversity of plant R/FR photoreceptor structures to established phytochrome signaling mechanisms.
    Type of Medium: Online Resource
    ISSN: 1532-298X , 1040-4651
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2009
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1994
    In:  Plant Molecular Biology Vol. 25, No. 3 ( 1994-6), p. 413-427
    In: Plant Molecular Biology, Springer Science and Business Media LLC, Vol. 25, No. 3 ( 1994-6), p. 413-427
    Type of Medium: Online Resource
    ISSN: 0167-4412 , 1573-5028
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1994
    detail.hit.zdb_id: 1475712-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Plant Cell, JSTOR, Vol. 9, No. 8 ( 1997-08), p. 1317-
    Type of Medium: Online Resource
    ISSN: 1040-4651
    Language: Unknown
    Publisher: JSTOR
    Publication Date: 1997
    detail.hit.zdb_id: 623171-8
    detail.hit.zdb_id: 2004373-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2003
    In:  The Plant Journal Vol. 34, No. 3 ( 2003-05), p. 317-326
    In: The Plant Journal, Wiley, Vol. 34, No. 3 ( 2003-05), p. 317-326
    Abstract: The Arabidopsis phyB, phyD, and phyE phytochromes regulate plant developmental and growth responses to continuous red light (R) and to the ratio of R to far‐red (FR) light. The activities of these three photoreceptors in the control of seedling growth have been compared using a transgenic assay based upon induction of R‐hypersensitivity of hypocotyl elongation by overexpression of the apoproteins from the 35S promoter. 35S‐phyB, 35S‐phyD, and 35S‐phyE lines expressing similar levels of the respective phytochromes were isolated. Under pulses of R, phyB is very active in inducing a dwarf hypocotyl phenotype, whereas phyD and phyE are inactive. Under high‐fluence continuous R, phyD shows a gain in activity whereas phyE does not. These results demonstrate significant differences in the inherent regulatory activities of these receptor apoproteins. To localize the sequence determinants of these functional differences, chimeric proteins were constructed by shuffling amino‐terminal, central, and carboxy‐terminal regions of phyB and phyD. Overexpression analysis of the phyB/D chimeras shows that it is the central region of these proteins that is most critical in determining their respective activities.
    Type of Medium: Online Resource
    ISSN: 0960-7412 , 1365-313X
    Language: English
    Publisher: Wiley
    Publication Date: 2003
    detail.hit.zdb_id: 2020961-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...