GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Science Data, Copernicus GmbH, Vol. 13, No. 8 ( 2021-08-25), p. 4067-4119
    Abstract: Abstract. The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmosphere, MDPI AG, Vol. 12, No. 12 ( 2021-11-27), p. 1583-
    Abstract: The Poland-AOD aerosol research network was established in 2011 to improve aerosol–climate interaction knowledge and provide a real-time and historical, comprehensive, and quantitative database for the aerosol optical properties distribution over Poland. The network consists of research institutions and private owners operating 10 measurement stations and an organization responsible for aerosol model transport simulations. Poland-AOD collaboration provides observations of spectral aerosol optical depth (AOD), Ångstrom Exponent (AE), incoming shortwave (SW) and longwave (LW) radiation fluxes, vertical profiles of aerosol optical properties and surface aerosol scattering and absorption coefficient, as well as microphysical particle properties. Based on the radiative transfer model (RTM), the aerosol radiative forcing (ARF) and the heating rate are simulated. In addition, results from GEM-AQ and WRF-Chem models (e.g., aerosol mass mixing ratio and optical properties for several particle chemical components), and HYSPLIT back-trajectories are used to interpret the results of observation and to describe the 3D aerosol optical properties distribution. Results of Poland-AOD research indicate progressive improvement of air quality and at mospheric turbidity during the last decade. The AOD was reduced by about 0.02/10 yr (at 550 nm), which corresponds to positive trends in ARF. The estimated clear-sky ARF trend is 0.34 W/m2/10 yr and 0.68 W/m2/10 yr, respectively, at TOA and at Earth’s surface. Therefore, reduction in aerosol load observed in Poland can significantly contribute to climate warming.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Geophysica, Springer Science and Business Media LLC, Vol. 72, No. 4 ( 2023-12-27), p. 2907-2924
    Abstract: This paper discusses the radiation budget and its temporal variability over Poland. The data analysis is based on the MERRA-2 reanalysis for the years 1980–2020. During the last four decades, the enhancement of climate warming has been observed, which coincides with the changes in the radiation budget. Positive and statistically significant trends at the top of the atmosphere (TOA; 0.7 ± 0.2 W/m 2 /10 year) and on the Earth’s surface (1.5 ± 0.2 W/m 2 /10 year) radiation budget (net downward flux) are mainly a consequence of changes in the amount of aerosol and greenhouse gases (GHG). According to MERRA-2, the AOD during this period decreased by − 0.19 (at 550 nm), which is 87% of the long-term (1980–2021) mean value (0.22). The reduction of AOD is due mainly to the decline of non-absorbing sulfate particles, which leads to a reduction of single-scattering albedo (SSA) by − 0.008 per decade and Angstrom exponent (AE) by − 0.06 per decade (both trends statistically significant). On the other hand, the GHG concentration increased by 4.9%/10 year and 3%/10 year, respectively, for CO 2 and CH 4 . The total column of water vapor increased (1.3%/10 year), while ozone decreased (− 1%/10 year). Despite the fact that cloud cover and cloud optical depth (COD) decreased (− 1.8%/10 year and − 1.0%/10 year), the impact of cloud on temporal variability radiation budget is small. It can be explained by nearly compensated shortwave (SW) cooling and longwave (LW) heating effects. During the analysis period, near-surface air temperature increased by 2.0 °C. The estimated increase in SW net surface radiation (7.9 W/m 2 ) leads to climate warming by 0.8 °C, which is a consequence mainly of the reduction of aerosol (0.4 °C) and cloud cover (0.2 °C). The impact of the change of SW radiation on air temperature is more pronounced during the warm season, while during the cold, air temperature change is controlled mainly by the variability of air mass advection.
    Type of Medium: Online Resource
    ISSN: 1895-7455
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2231673-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Geophysica, Springer Science and Business Media LLC, Vol. 64, No. 6 ( 2016-12), p. 2550-2590
    Type of Medium: Online Resource
    ISSN: 1895-6572 , 1895-7455
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2264186-5
    detail.hit.zdb_id: 2231673-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Sensors, MDPI AG, Vol. 20, No. 9 ( 2020-05-04), p. 2617-
    Abstract: The aerosol scattering coefficient and Ångström exponent (AE) are important parameters in the understanding of aerosol optical properties and aerosol direct effect. These parameters are usually measured by a nephelometer network which is under-represented geographically; however, a rapid growth of air-pollution monitoring, using low-cost particle sensors, may extend observation networks. This paper presents the results of co-located measurements of aerosol optical properties, such as the aerosol scattering coefficient and the scattering AE, using low-cost sensors and using a scientific-grade polar Aurora 4000 nephelometer. A high Pearson correlation coefficient (0.94–0.96) between the low-cost particulate matter (PM) mass concentration and the aerosol scattering coefficient was found. For the PM10 mass concentration, the aerosol scattering coefficient relation is linear for the Dfrobot SEN0177 sensor and non-linear for the Alphasense OPC-N2 device. After regression analyses, both low-cost instruments provided the aerosol scattering coefficient with a similar mean square error difference (RMSE) of about 20 Mm−1, which corresponds to about 27% of the mean aerosol scattering coefficient. The relative uncertainty is independent of the pollution level. In addition, the ratio of aerosol number concentration between different bins showed a significant statistical (95% of confidence level) correlation with the scattering AE. For the SEN0177, the ratio of the particle number in bin 1 (radius of 0.15–0.25 µm) to bin 4 (radius of 1.25–2.5 µm) was a linear function of the scattering AE, with a Pearson correlation coefficient of 0.74. In the case of OPC-N2, the best correlation (r = 0.66) was found for the ratio between bin 1 (radius of 0.19–0.27 µm) and bin 2 (radius of 0.27–0.39 µm). Comparisons of an estimated scattering AE from a low-cost sensor with Aurora 4000 are given with the RMSE of 0.23–0.24, which corresponds to 16–19%. In addition, a three-year (2016–2019) observation by SEN0177 indicates that this sensor can be used to determine an annual cycle as well as a short-term variability.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmosphere, MDPI AG, Vol. 10, No. 8 ( 2019-08-02), p. 446-
    Abstract: The impact of absorbing aerosols on climate is complex, with their potential positive or negative forcing, depending on many factors, including their height distribution and reflective properties of the underlying background. Measurement data is very limited, due to insufficient remote sensing methods dedicated to the retrieval of their vertical distribution. Columnar values of absorbing aerosol optical depth (AAOD) and single scattering albedo (SSA) are retrieved by the Aerosol Robotic Network (AERONET). However, the number of available results is low due to sky condition and aerosol optical depth (AOD) limitation. Presented research describes results of field campaigns in Strzyżów (South-East Poland, Eastern Europe) dedicated to the comparison of the absorption coefficient and SSA measurements performed with on-ground in-situ devices (aethalomter, nephelometer), small unmanned aerial system (UAS) carrying micro-aethalometer, as well as with lidar/ceilometer. An important aspect is the comparison of measurement results with those delivered by AERONET. Correlation of absorption to scattering coefficients measured on ground (0.79) and correlation of extinction on ground to AOD measured by AERONET (0.77) was visibly higher than correlation between AOD and AAOD retrieved by AERONET (0.56). Columnar SSA was weakly correlated with ground SSA (higher values of columnar SSA), which were mainly explained by hygroscopic effects, increasing scattering coefficient in ambient (wet conditions), and partly high uncertainty of SSA retrieval. AAOD derived with the use of profiles from UAS up to PBL height, was estimated to contribute in average to 37% of the total AAOD. A method of AAOD estimation, in the whole troposphere, with use of measured vertical profiles of absorption coefficient and extinction coefficient profiles from lidars was proposed. AAOD measured with this method has poor correlation with AERONET data, however for some measurements, within PBL, AAOD was higher than reported by AERONET, suggesting potential underestimation in photometric measurement under particular conditions. Correlation of absorption coefficient in profile to on ground measurements decrease with altitude. Measurements of SSA from drones agree well with ground measurements and are lower than results from AERONET, which suggests a larger contribution of absorbing aerosols. As an alternative for AAOD estimation in case of lack of AERONET AAOD data simple models are proposed, which base on AOD scaling with SSA measured with different methods. Proposed solution increase potential of absorption coefficient measurements in vertical profiles and columns of the atmosphere. Presented solutions make measurements of absorption coefficients in vertical profiles more affordable and allow rough estimation of columnar values for the whole atmosphere.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2014
    In:  Miscellanea Geographica Vol. 18, No. 2 ( 2014-6-1), p. 35-45
    In: Miscellanea Geographica, Walter de Gruyter GmbH, Vol. 18, No. 2 ( 2014-6-1), p. 35-45
    Abstract: Remote sensing from unmanned aerial systems (UAS) has been gaining popularity in the last few years. In the field of vegetation mapping, digital cameras converted to calculate vegetation index (DCVI) are one of the most popular sensors. This paper presents simulations using a radiative transfer model (libRadtran) of DCVI and NDVI results in an environment of possible UAS flight scenarios. The analysis of the results is focused on the comparison of atmosphere influence on both indices. The results revealed uncertainties in uncorrected DCVI measurements up to 25% at the altitude of 5 km, 5% at 1 km and around 1% at 0.15 km, which suggests that DCVI can be widely used on small UAS operating below 0.2 km.
    Type of Medium: Online Resource
    ISSN: 2084-6118
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2014
    detail.hit.zdb_id: 2715618-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University ; 2013
    In:  Ecological Questions Vol. 17 ( 2013-07-19), p. 35-
    In: Ecological Questions, Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University, Vol. 17 ( 2013-07-19), p. 35-
    Type of Medium: Online Resource
    ISSN: 1644-7298
    Language: Unknown
    Publisher: Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
    Publication Date: 2013
    detail.hit.zdb_id: 2146344-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Pure and Applied Geophysics Vol. 175, No. 9 ( 2018-9), p. 3325-3342
    In: Pure and Applied Geophysics, Springer Science and Business Media LLC, Vol. 175, No. 9 ( 2018-9), p. 3325-3342
    Type of Medium: Online Resource
    ISSN: 0033-4553 , 1420-9136
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1464028-4
    detail.hit.zdb_id: 216718-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...