GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. CT180-CT180
    Abstract: Genetically modified cell-based therapies are of increasing relevance in immuno-oncology due to their potential for tumor specificity, long term efficacy & limiting off-target effects. We have developed a genetically modified cell-based platform, with ex-vivo transduction of autologous hematopoietic stem & progenitor cells with a lentiviral vector expressing the IFN-α transgene (Temferon) & delivery by autologous stem cell transplantation (ASCT). Specific control mechanisms restrict transgene expression to Tie-2 expressing macrophages (TEMs) thanks to a specific Tie-2 promoter & a post-transcriptional regulation layer represented by miRNA target sequences. TEM-GBM is an ongoing open-label, Phase I/IIa dose-escalation study evaluating safety & efficacy of Temferon in newly diagnosed patients with glioblastoma & unmethylated MGMT promoter. Part A includes 15 patients to optimize the dose & conditioning regimen (completion expected end of Q2/21), & Part B includes 6 patients. By 10th Nov 2020, 13 patients had enrolled; 8 received Temferon with a median follow up of 298 days (53-491). One patient died from progressive disease (PD) at D+403. PD occurred in 6 patients after a median 123 days (83-229) from treatment, within expectations for this tumor type. 4 patients underwent second surgery. Temferon was well tolerated, with median neutrophil & platelet engraftment occurring at D+13 & D+12, respectively, post submyeloablative BCNU + Thiotepa conditioning, & without dose-limiting toxicities. SAEs attributed to ASCT, concomitant medications & GBM progression included febrile neutropenia & other infectious complications, venous thromboembolism, poor performance status, liver enzyme elevation, brain abscess & hemiparesis. Temferon-derived differentiated cells, as determined by the presence of vector genomes in peripheral blood & bone marrow, were evident within 14 days from treatment & persisted, albeit at lower levels, in the long term (up to 1 year). The built-in transgene expression control mechanism was effective as suggested by the very low concentrations of IFN-α detected in the plasma & cerebrospinal fluid. The T-cell immune repertoire changed after treatment, with evidence for expansion of tumor-associated clones in peripheral blood. Preliminary data on tumor specimens from second surgery confirmed the presence of TEMs & increased expression of IFN-responsive gene signatures compared to diagnosis indicative of local IFN-α release. Biopsies of a stable as compared to a progressing lesion in 1 patient had a higher proportion of T cells & TEMs within the myeloid infiltrate & a markedly increased IFN-response signature. Comprehensive characterization of the tumor microenvironment by scRNA sequencing is ongoing. The results provide initial evidence of the biological effects of Temferon in patients with GBM. Citation Format: Bernhard Gentner, Gaetano Finocchiaro, Francesca Farina, Alessia Capotondo, Marica Eoli, Elena Anghileri, Maya Ganzetti, Matteo Carabba, Valeria Cuccarini, Francesco Di Meco, Federico Legnani, Bianca Pollo, Maria Grazia Bruzzone, Marco Saini, Paolo Ferroli, Roberto Pallini, Alessandro Olivi, Rosina Paterra, Mariagrazia Garramone, Stefania Mazzoleni, Valentina Brambilla, Tiziana Magnani, Gabriele Antonarelli, Matteo Naldini, Matteo Barcella, Carlo Russo, Luigi Naldini, Fabio Ciceri. Changes in immunologic responses and in the tumor microenvironment in patients with glioblastoma multiforme treated with IFN-a immune cell and gene therapy (TEM-GBM_001 Study) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr CT180.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. 2532-2532
    Abstract: 2532 Background: Genetically modified cell-based therapies are relevant in immuno-oncology due to their potential for tumor specificity & potential durability. We developed a cell-based treatment, Temferon, relying on ex-vivo transduction of autologous HSPCs to express therapeutic payloads within the tumor microenvironment. Temferon targets IFNa to Tie-2 expressing macrophages (TEMs). Methods: TEM-GBM is an open-label, Phase I/IIa dose-escalation study evaluating safety & efficacy of Temferon in up to 21 newly diagnosed patients with glioblastoma & unmethylated MGMT promoter. Autologous HSPCs are transduced ex-vivo with a lentiviral vector encoding for IFNa. The transgene expression is confined to TEMs due to the Tie2 promoter & the post-transcriptional regulation by miRNA-126. Results: As of January 17 2021, 15 patients have been enrolled; 9 received Temferon (D+0) with follow-up of 61 – 559 days. There was rapid engraftment & hematological recovery after the conditioning regimen. Median neutrophil & platelet engraftment occurred at D+13 & D+12, respectively. Temferon-derived differentiated cells, as determined by the presence of vector genomes in the DNA of peripheral blood & bone marrow cells, were found within 14 days post treatment & persisted subsequently, albeit at lower levels (up to 18 months). We also detected very low concentrations of IFNa in the plasma (median 5pg/ml at D+30; baseline 〈 LLOQ) & in the cerebrospinal fluid, suggesting tight regulation of transgene expression. Three deaths occurred: two at D+343 & +402 after Temferon administration due to disease progression, & one at D+60 due to complications following the conditioning regimen. Seven patients had progressive disease (PD; range D+27-239) as expected for this tumor type. SAEs include infections, venous thromboembolism, brain abscess, hemiparesis, GGT elevation & poor performance status compatible with autologous stem cell transplantation, concomitant medications & PD. Four patients underwent second surgery. These recurrent tumors had gene-marked cells present & increased expression of IFN-responsive gene signatures compared to diagnosis, indicative of local IFNa release by TEMs. In one patient a stable lesion (as defined by MRI) had a higher proportion of T cells & TEMs within the myeloid infiltrate & an increased IFN-response signature than in a progressing lesion. The T-cell immune repertoire changed with evidence for expansion of tumor-associated clones. Tumor microenvironment characterization by scRNA & TCR sequencing is ongoing. Conclusions: Our interim results show that Temferon is well tolerated by patients, with no dose limiting toxicities identified to date. The results provide initial evidence of Temferon potential to modulate the TME of GBM patients, as predicted by preclinical studies. Clinical trial information: NCT03866109.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...