GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Cell Reports, Elsevier BV, Vol. 36, No. 8 ( 2021-08), p. 109604-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 4 ( 2022-08-31)
    Abstract: Promyelocytic leukemia nuclear bodies (PML-NBs) were considered to maintain antiviral capacity, as these spherical complexes are antagonized by viruses. Actual work provides evidence, that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Several early HAdV proteins target PML-NBs, such as E4orf3 that promotes redistribution into track-like structures. PML-associated dependency factors that enhance viral gene expression, such as Sp100A remain in the nuclear tracks while restrictive factors, such as Daxx, are inhibited by either proteasomal degradation or relocalization to repress antiviral functions. Here, we did a comprehensive analysis of nuclear PML isoforms during HAdV infection. Our results show cell line specific differences as PML isoforms differentially regulate productive HAdV replication and progeny production. Here, we identified PML-II as a dependency factor that supports viral progeny production, while PML-III and PML-IV suppress viral replication. In contrast, we identified PML-I as a positive regulator and PML-V as a restrictive factor during HAdV infection. Solely PML-VI was shown to repress adenoviral progeny production in both model systems. We showed for the first time, that HAdV can reorganize PML-NBs that contain PML isoforms other then PML-II. Intriguingly, HAdV was not able to fully disrupt PML-NBs composed out of the PML isoforms that inhibit viral replication, while PML-NBs composed out of PML isoforms with beneficial influence on the virus formed tracks in all examined cells. In sum, our findings clearly illustrate the crucial role of PML-track formation in efficient viral replication. IMPORTANCE Actual work provides evidence that PML-NB-associated factors might also be beneficial for distinct viral processes indicating why genomes and replication centers of nuclear replicating viruses are often found juxtaposed to PML-NBs. Alternatively spliced PML isoforms I-VII are expressed from one single pml gene containing nine exons and their transcription is tightly controlled and stimulated by interferons and p53. Several early HAdV proteins target PML-NBs, such as E4orf3, promoting redistribution into track-like structures. Our comprehensive studies indicate a diverging role of PML isoforms throughout the course of productive HAdV infection in either stably transformed human lung (H1299) or liver (HepG2) cells, in which we observed a multivalent regulation of HAdV by all six PML isoforms. PML-I and PML-II support HAdV-mediated track formation and efficient formation of viral replication centers, thus promoting HAdV productive infection. Simultaneously, PML-III, -IV,-V, and -VI antagonize viral gene expression and particle production.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 3 ( 2023-06-15)
    Abstract: Viruses have developed many different strategies to counteract immune responses, and Vaccinia virus (VACV) is one of a kind in this aspect. To ensure an efficient infection, VACV undergoes a complex morphogenetic process resulting in the production of two types of infective virions: intracellular mature virus (MV) and extracellular enveloped virus (EV), whose spread depends on different dissemination mechanisms. MVs disseminate after cell lysis, whereas EVs are released or propelled in actin tails from living cells. Here, we show that ISG15 participates in the control of VACV dissemination. Infection of Isg15 −/− mouse embryonic fibroblasts with VACV International Health Department-J (IHD-J) strain resulted in decreased EV production, concomitant with reduced induction of actin tails and the abolition of comet-shaped plaque formation, compared to Isg15 +/+ cells. Transmission electron microscopy revealed the accumulation of intracellular virus particles and a decrease in extracellular virus particles in the absence of interferon-stimulated gene 15 (ISG15), a finding consistent with altered virus egress. Immunoblot and quantitative proteomic analysis of sucrose gradient-purified virions from both genotypes reported differences in protein levels and composition of viral proteins present on virions, suggesting an ISG15-mediated control of viral proteome. Lastly, the generation of a recombinant IHD-J expressing V5-tagged ISG15 (IHD-J-ISG15) allowed us to identify several viral proteins as potential ISG15 targets, highlighting the proteins A34 and A36, which are essential for EV formation. Altogether, our results indicate that ISG15 is an important host factor in the regulation of VACV dissemination. IMPORTANCE Viral infections are a constant battle between the virus and the host. While the host’s only goal is victory, the main purpose of the virus is to spread and conquer new territories at the expense of the host’s resources. Along millions of years of incessant encounters, poxviruses have developed a unique strategy consisting in the production two specialized “troops”: intracellular mature virions (MVs) and extracellular virions (EVs). MVs mediate transmission between hosts, and EVs ensure advance on the battlefield mediating the long-range dissemination. The mechanism by which the virus “decides” to shed from the primary site of infection and its significant impact in viral transmission is not yet fully established. Here, we demonstrate that this process is finely regulated by ISG15/ISGylation, an interferon-induced ubiquitin-like protein with broad antiviral activity. Studying the mechanism that viruses use during infection could result in new ways of understanding our perpetual war against disease and how we might win the next great battle.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 1 ( 2021-09-03)
    Abstract: Hepatitis C virus (HCV) can cause acute and chronic infection that is associated with considerable liver-related morbidity and mortality. In recent years, there has been a shift in the treatment paradigm with the discovery and approval of agents that target specific proteins vital for viral replication. We employed a cell culture-adapted strain of HCV and human hepatoma-derived cells lines to test the effects of our novel small-molecule compound (AO13) on HCV. Virus inhibition was tested by analyzing RNA replication, protein expression, and virus production in virus-infected cells treated with AO13. Treatment with AO13 inhibited virus spread in cell culture and showed a 100-fold reduction in the levels of infectious virus production. AO13 significantly reduced the level of viral RNA contained within cell culture fluids and reduced the cellular levels of HCV core protein, suggesting that the compound might act on a late step in the viral life cycle. Finally, we observed that AO13 did not affect the release of infectious virus from infected cells. Docking studies and molecular dynamics analyses suggested that AO13 might target the NS5B RNA polymerase, however, real-time RT-PCR analyses of cellular levels of HCV RNA showed only an ∼2-fold reduction in viral RNA levels in the presence of AO13. Taken together, this study revealed that AO13 showed consistent, but low-level antiviral effect against HCV, although the mechanism of action remains unclear. IMPORTANCE The discovery of curative antiviral drugs for a chronic disease such as HCV infection has encouraged drug discovery in the context of other viruses for which no curative drugs currently exist. Since we currently face a novel virus that has caused a pandemic, the need for new antiviral agents is more apparent than ever. We describe here a novel compound that shows a modest antiviral effect against HCV that could serve as a lead compound for future drug development against other important viruses such as SARS-CoV-2.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Journal of Virology Vol. 87, No. 1 ( 2013-01), p. 464-473
    In: Journal of Virology, American Society for Microbiology, Vol. 87, No. 1 ( 2013-01), p. 464-473
    Abstract: During cellular invasion, human papillomavirus type 16 (HPV16) must transfer its viral genome (vDNA) across the endosomal membrane prior to its accumulation at nuclear PML bodies for the establishment of infection. After cellular uptake, the capsid likely undergoes pH-dependent disassembly within the endo-/lysosomal compartment, thereby exposing hidden domains in L2 that facilitate membrane penetration of L2/vDNA complexes. In an effort to identify regions of L2 that might physically interact with membranes, we have subjected the L2 sequence to multiple transmembrane (TM) domain prediction algorithms. Here, we describe a conserved TM domain within L2 (residues 45 to 67) and investigate its role in HPV16 infection. In vitro , the predicted TM domain adopts an alpha-helical structure in lipid environments and can function as a real TM domain, although not as efficiently as the bona fide TM domain of PDGFR. An L2 double point mutant renders the TM domain nonfunctional and blocks HPV16 infection by preventing endosomal translocation of vDNA. The TM domain contains three highly conserved GxxxG motifs. These motifs can facilitate homotypic and heterotypic interactions between TM helices, activities that may be important for vDNA translocation. Disruption of some of these GxxxG motifs resulted in noninfectious viruses, indicating a critical role in infection. Using a ToxR-based homo-oligomerization assay, we show a propensity for this TM domain to self-associate in a GxxxG-dependent manner. These data suggest an important role for the self-associating L2 TM domain and the conserved GxxxG motifs in the transfer of vDNA across the endo-/lysosomal membrane.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    In: Microbiology Spectrum, American Society for Microbiology
    Abstract: Ebola virus is the causative agent of Ebola virus disease, which is severe and frequently lethal. EBOV gains entry into cells via late endosomes/lysosomes. The events immediately preceding fusion of the viral and endosomal membranes are incompletely understood. In this study, we report a novel in vitro system for studying virus fusion with endosomal membranes. We validated the system by demonstrating the low pH dependencies of influenza and Lassa virus fusion. Moreover, we show that further cathepsin B action enhances the fusion activity of the primed Ebola virus glycoprotein. Finally, this model endosomal membrane system should be useful in studying the mechanisms of bilayer breaching by other enveloped viruses, by non-enveloped viruses, and by acid-activated bacterial toxins.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  BMC Research Notes Vol. 5, No. 1 ( 2012-12)
    In: BMC Research Notes, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2012-12)
    Abstract: Subspecies B1 human adenoviruses (HAdV-B1) are prevalent respiratory pathogens. Compared to their species C (HAdV-C) counterparts, relatively little work has been devoted to the characterization of their unique molecular biology. The early region 3 (E3) transcription unit is an interesting target for future efforts because of its species-specific diversity in genetic content among adenoviruses. This diversity is particularly significant for the subset of E3-encoded products that are membrane glycoproteins and may account for the distinct pathobiology of the different human adenovirus species. In order to understand the role of HAdV-B-specific genes in viral pathogenesis, we initiated the characterization of unique E3 genes. As a continuation of our efforts to define the function encoded in the highly polymorphic ORF E3-10.9K and testing the hypothesis that the E3-10.9K protein orthologs with a hydrophobic domain contribute to the efficient release of viral progeny, we generated HAdV-3 mutant viruses unable to express E3-10.9K ortholog E3-9K and examined their ability to grow, disseminate, and egress in cell culture. Results No differences were observed in the kinetics of infected cell death, and virus progeny release or in the plaque size and dissemination phenotypes between cells infected with HAdV-3 E3-9K mutants or the parental virus. The ectopic expression of E3-10.9K orthologs with a hydrophobic domain did not compromise cell viability. Conclusions Our data show that despite the remarkable similarities with HAdV-C E3-11.6K, HAdV-B1 ORF E3-10.9K does not encode a product with a “death-like” biological activity.
    Type of Medium: Online Resource
    ISSN: 1756-0500
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2413336-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 2 ( 2021-10-31)
    Abstract: The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo . The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the “ridge” of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both “up” and “down” conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies’ neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 9, No. 2 ( 2021-10-31)
    Abstract: UV light, more specifically UV-C light at a wavelength of 254 nm, is often used to disinfect surfaces, air, and liquids. In early 2020, at the cusp of the COVID-19 pandemic, UV light was identified as an efficient means of eliminating coronaviruses; however, the variability in published sensitivity data is evidence of the need for experimental rigor to accurately quantify the effectiveness of this technique. In the current study, reliable and reproducible UV techniques have been adopted, including accurate measurement of light intensity, consideration of fluid UV absorbance, and confirmation of uniform dose delivery, including dose verification using an established biological target (T1UV bacteriophage) and a resistant recombinant virus (baculovirus). The experimental results establish the UV sensitivity of SARS-CoV-2, HCoV-229E, HCoV-OC43, and mouse hepatitis virus (MHV) and highlight the potential for surrogate viruses for disinfection studies. All four coronaviruses were found to be easily inactivated by 254 nm irradiation, with UV sensitivities of 1.7, 1.8, 1.7, and 1.2 mJ/cm 2 /log 10 reduction for SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV, respectively. Similar UV sensitivities for these species demonstrate the capacity for HCoV-OC43, HCoV-229E, and MHV to be considered surrogates for SARS-CoV-2 in UV-inactivation studies, greatly reducing hazards and simplifying procedures for future experimental studies. IMPORTANCE Disinfection of SARS-CoV-2 is of particular importance due to the global COVID-19 pandemic. UV-C irradiation is a compelling disinfection technique because it can be applied to surfaces, air, and water and is commonly used in drinking water and wastewater treatment facilities. UV inactivation depends on the dose received by an organism, regardless of the intensity of the light source or the optical properties of the medium in which it is suspended. The 254 nm irradiation sensitivity was accurately determined using benchmark methodology and a collimated beam apparatus for four coronaviruses (SARS-CoV-2, HCoV-229E, HCoV-OC43, and MHV), a surrogate indicator organism (T1UV), and a resistant recombinant virus (baculovirus vector). Considering the light distribution across the sample surface, the attenuation of light intensity with fluid depth, the optical absorbance of the fluid, and the sample uniformity due to mixing enable accurate measurement of the fundamental inactivation kinetics and UV sensitivity.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...