GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 15 ( 2023-08-08), p. 3874-3890
    Abstract: Multiple myeloma (MM) shows constitutive activation of canonical and noncanonical nuclear factor κB (NF-κB) signaling via genetic mutations or tumor microenvironment (TME) stimulations. A subset of MM cell lines showed dependency for cell growth and survival on the canonical NF-κB transcription factor RELA alone, suggesting a critical role for a RELA-mediated biological program in MM pathogenesis. Here, we determined the RELA-dependent transcriptional program in MM cell lines and found the expression of the cell surface molecules interleukin-27 receptor-α (IL-27Rα) and the adhesion molecule JAM2 to be responsive to RELA at the messenger RNA and protein levels. IL-27Rα and JAM2 were expressed on primary MM cells at higher levels than on healthy long-lived plasma cells (PCs) in the bone marrow. IL-27 activated STAT1, and to a lesser extent STAT3, in MM cell lines and in PCs generated from memory B cells in an IL-21–dependent in vitro PC differentiation assay. Concomitant activity of IL-21 and IL-27 enhanced differentiation into PCs and increased the cell-surface expression of the known STAT target gene CD38. In accordance, a subset of MM cell lines and primary MM cells cultured with IL-27 upregulated CD38 cell-surface expression, a finding with potential implications for enhancing the efficacy of CD38-directed monoclonal antibody therapies by increasing CD38 expression on tumor cells. The elevated expression of IL-27Rα and JAM2 on MM cells compared with that on healthy PCs may be exploited for the development of targeted therapeutic strategies that modulate the interaction of MM cells with the TME.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    detail.hit.zdb_id: 2915908-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Molecular Cell Vol. 80, No. 3 ( 2020-11), p. 377-378
    In: Molecular Cell, Elsevier BV, Vol. 80, No. 3 ( 2020-11), p. 377-378
    Type of Medium: Online Resource
    ISSN: 1097-2765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1415236-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Cell, Elsevier BV, Vol. 28, No. 1 ( 2015-07), p. 114-128
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 12 ( 2021-12-01), p. 3214-3229
    Abstract: Small cell lung cancer (SCLC) has limited therapeutic options and an exceptionally poor prognosis. Understanding the oncogenic drivers of SCLC may help define novel therapeutic targets. Recurrent genomic rearrangements have been identified in SCLC, most notably an in-frame gene fusion between RLF and MYCL found in up to 7% of the predominant ASCL1-expressing subtype. To explore the role of this fusion in oncogenesis and tumor progression, we used CRISPR/Cas9 somatic editing to generate a Rlf–Mycl-driven mouse model of SCLC. RLF–MYCL fusion accelerated transformation and proliferation of murine SCLC and increased metastatic dissemination and the diversity of metastatic sites. Tumors from the RLF–MYCL genetically engineered mouse model displayed gene expression similarities with human RLF–MYCL SCLC. Together, our studies support RLF–MYCL as the first demonstrated fusion oncogenic driver in SCLC and provide a new preclinical mouse model for the study of this subtype of SCLC. Significance: The biological and therapeutic implications of gene fusions in SCLC, an aggressive metastatic lung cancer, are unknown. Our study investigates the functional significance of the in-frame RLF–MYCL gene fusion by developing a Rlf–Mycl-driven genetically engineered mouse model and defining the impact on tumor growth and metastasis. This article is highlighted in the In This Issue feature, p. 2945
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    detail.hit.zdb_id: 2625242-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Leukemia, Springer Science and Business Media LLC, Vol. 33, No. 2 ( 2019-2), p. 541-545
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 807030-1
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Clinical Oncology (ASCO) ; 2021
    In:  JCO Precision Oncology , No. 5 ( 2021-11), p. 145-152
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 5 ( 2021-11), p. 145-152
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2964799-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 5214-5214
    Abstract: Large case-control and familial studies have established clear cancer-specific risk profiles for several key cancer predisposition genes (CPGs). For example, germline pathogenic variants (PVs) in BRCA1/2 (gBRCA) are associated with increased risk for developing breast, ovarian, pancreatic, and prostate cancers. However, the extent to which gBRCA mutations are involved in mediating the tumorigenesis of other cancer types remains challenging to characterize. We hypothesized that integrating orthogonal features such as selection for biallelic inactivation of the PVs and depletion of canonical somatic drivers among the carriers can enrich the signal for identifying novel gene and cancer type associations. We then extend this framework to identify novel CPGs as well as to understand how tumors arise in patients with PVs in oncogenes. To study this, we leveraged the prospective MSK-IMPACT matched tumor-normal sequencing cohort of 49,291 patients across 77 major cancer types. We study 90 well-known CPGs as well as & gt;300 cancer genes not previously associated with cancer predisposition. Overall, 8% (N=3,964) of patients harbored a PV in high or moderate penetrance CPGs. We identified 90 gene and cancer type associations with enrichment for biallelic inactivation (q & lt;0.05), including 19 novel findings among clinically actionable genes. For example, we find enrichment for biallelic inactivation of BRCA1/2 in unexpected lineages such as hepatobiliary, endometrioid, and ampullary cancers. These tumors were also significantly depleted for somatic gain-of-function driver alterations. Hepatobiliary cancers with gBRCA1 mutations were also enriched for somatic loss of NF1. Among carriers of PVs in oncogenes, we observe two possible mechanisms of first somatic hit towards malignant transformation. We find enrichment for copy number gain or copy neutral loss of heterozygosity of the germline PV in thyroid cancers with a PV in RET. We also find that lung cancers with a germline PV in EGFR frequently developed additional somatic point mutations located in cis with the PV. Investigating genes with no prior association with germline predisposition to cancer, we find evidence for KEAP1 and CIC as likely novel CPGs. Lung (n=8) and thyroid (n=4) cancers with deleterious germline variants in KEAP1 were characterized by loss of the wild-type allele, co-occurring somatic STK11 mutations, and depletion of canonical drivers such as EGFR. We also found biallelic loss of CIC in two patients with Neuroblastoma, each carrying a different germline loss-of-function mutation in CIC. Both tumors were also negative for MYCN and ALK defects. Collectively, our findings expand our understanding of cancer predisposition in cancer, shed new insights into how tumors arise in germline carriers, and provide a framework for identifying new CPGs using population scale tumor-normal paired clinical sequencing data. Citation Format: Miika Mehine, Rebecca Caeser, Yelena Kemel, Daniel Muldoon, Sebastià Franch-Expósito, A. Rose Brannon, Aijazuddin Syed, Ozge Ceyhan-Birsoy, Maksym Misyura, Panieh Terraf, David B. Solit, Marc Ladanyi, Kenneth Offit, Zsofia K. Stadler, Diana L. Mandelker, Yonina R. Murciano-Goroff, Charles M. Rudin, Michael F. Berger, Chaitanya Bandlamudi. Expanding the spectrum of germline-driven cancers by leveraging population-scale targeted tumor and normal sequencing. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5214.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6238-6238
    Abstract: Introduction: Small-cell lung cancer (SCLC) is a high-grade neuroendocrine carcinoma characterised by high proliferation rate and early, rapid metastatic spread. Although SCLC is treated as a homogenous disease, recent studies revealed morphologic and transcriptomic heterogeneity with several molecular subtypes described based on predominant transcription factor expression (ASCL1, NEUROD1, ATOH1, POU2F3, YAP1) (Rudin et al., 2019; Simpson et al., 2020) which in preclinical studies exhibit differing vulnerabilities raising the potential of stratified therapy. DNA methylation is also thought be an important regulator of SCLC biology (Gazdar et al., 2017) and epigenetically distinct subtypes derived from SCLC primary tumour samples reported (Poirier et al., 2015). Here, we developed a robust workflow for genome-wide DNA methylation profiling to examine the potential use of cfDNA methylation profiling for detection and subtyping of SCLC. Results: To evaluate SCLC genome-wide DNA methylation patterns we employed a bisulfite-free enrichment-based approach (T7-MBD-seq). We tested this approach on tissue samples from preclinical models and from normal lung (n=110) and on cfDNA samples from both patients with SCLC and from non-cancer controls (n=157). Methylation profiles from preclinical models (patient-derived xenografts (PDX) and CTC derived explant (CDX) models) were comparable to previously described methylation patterns from SCLC primary tumours and were recapitulated in patients’ cfDNA samples. A tumour/normal classifier, based on 4,061 genomic regions detected as being hypermethylated in SCLC preclinical models, correctly assigned 93% and 100% cfDNA samples from patients with limited and extensive stage SCLC respectively, with a statistically significant correlation of prediction scores with disease stage (P=0.0076). Finally, to determine whether cfDNA methylation profiling could subtype SCLC patients, we built a subtype classifier, based on methylation signatures derived from 59 established SCLC cell lines. We applied the classifier to cfDNA samples from 56 patients and 10/11 with known subtypes (identified from a donor matched CDX model) were correctly classified. Overall, 73% of cfDNA samples were classified as ASCL1, 13% were classified as NEUROD1 and 14% were classified as being double negative with the distribution of the subtypes correlating closely to previously published IHC data from SCLC tissue samples (Baine et al., 2020). Conclusions: Our data reveal two potential clinical utilities of cfDNA methylation profiling; a universally applicable liquid biopsy approach for more sensitive detection and monitoring of SCLC and molecular subtyping to ease the path to future clinical trials of subtype stratified treatments for patients with SCLC. Citation Format: Dominic G. Rothwell, Francesca Chemi, Simon Pearce, Alex Clipson, Steven Hill, Alicia Marie Conway, Sophie Richardson, Katarzyna Murat, Rebecca Caeser, Jacklynn Egger, John T. Poirier, Alastair Kerr, Fiona Blackhall, Charles M. Rudin, Caroline Dive. Profiling of the circulating cell-free DNA methylome for detection and subtyping of small cell lung cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6238.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3858-3858
    Abstract: Introduction: Squamous cell carcinomas (LUSCs) account for 25-30% cases of non-small cell lung cancers, making them the second most common histology of lung cancer after adenocarcinomas. For the latter, molecular characterization has defined tumor subsets with discrete driver alterations sensitive to targeted inhibitors, leading to significant improvement in patient survival. However, for LUSCs, to date no specific drivers have been described that are amenable for pharmacological targeting and no targeted therapies are approved for use in this setting. Despite decades of research, LUSCs are still treated with cytotoxic chemotherapy, and now concomitant immunotherapy, which does not achieve durable responses in most patients. Thus, identification of targetable vulnerabilities in this setting remains a critical unmet clinical need. Preliminary data from our lab has identified the nuclear exporter exportin 1 as a therapeutic vulnerability in small cell lung carcinomas. Exportin 1 (XPO1) inhibition with Selinexor, a drug approved for clinical use in the setting of hematological malignancies, induces significant sensitivity in combination with cisplatin and irinotecan. Here, we explored the role of XPO1 as a therapeutic target in LUSC. Methods: We performed a comprehensive multi-omic molecular characterization of a library of LUSC patient-derived xenografts (PDXs) (N=28, with 17 clinical samples being matched pairs). IHC, RNA-seq and NGS via MSK-IMPACT were performed on 27 samples. To examine the potential of XPO1 inhibition as sensitizer to chemotherapy in LUSC, we performed genetic and pharmacological inhibition experiments in LUSC cell lines exhibiting high XPO1 expression. Results: Of the 28 models, 19 samples (68%) were from primary tumors and 9 samples (32%) from metastasis. The sample set were roughly split in half with regard to treatment status; 15 samples (54%) were treatment naïve and 13 sample were treated (46%).XPO1 is highly expressed in LUSCs clinical specimens compared to other tumor types, and its knockdown reduces tumorigenic features of LUSC cell lines with high XPO1 expression, including proliferation and anchorage-independent growth. Targeted XPO1 inhibition with selinexor induces chemotherapy sensitization to carboplatin and paclitaxel, drugs currently used in the treatment of LUSC, as depicted by high cytotoxic synergy scores of selinexor with either drug. Conclusion: Our data suggest that XPO1 expression may exert pro-oncogenic effects in LUSC, consistent with its upregulation in this tumor setting, and that its inhibition with selinexor may strongly sensitize to chemotherapy. Assessment of efficacy of combination therapies with selinexor in vivo will assess the potential of these combinations as a therapeutic approach for LUSC tumors. The clinical availability of selinexor would allow immediate clinical translation of the results generated in this project. Citation Format: Vidushi Durani, Rebecca Caeser, Charles M. Rudin, Alvaro Quintanal-Villalonga, Harsha Sridhar, Parvathy Manoj, Sam E. Tischfield, Marina Asher, Umeshkumar Bhanot, Jacklynn V. Egger, Nicholas D. Socci D. Socci, Nisargbhai S S. Shah, Elisa de Stanchina, Natasha Rekhtman. Exploring Exportin-1 as a therapeutic vulnerability in squamous cell carcinoma. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3858.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cell Reports, Elsevier BV, Vol. 39, No. 7 ( 2022-05), p. 110814-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...