GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 9 ( 2021-6-25)
    Abstract: Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Fisheries Research, Elsevier BV, Vol. 201 ( 2018-05), p. 68-78
    Type of Medium: Online Resource
    ISSN: 0165-7836
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 406532-3
    detail.hit.zdb_id: 1497860-X
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Fisheries Oceanography, Wiley, Vol. 27, No. 3 ( 2018-05), p. 274-287
    Abstract: A recent population hypothesis for Antarctic silverfish ( Pleuragramma antarctica ), a critical forage species, argued that interactions between life history and circulation associated with glacial trough systems drive circumpolar distributions over the continental shelf. In the Ross Sea, aggregations of eggs and larvae occur under fast ice in Terra Nova Bay, and the hypothesis predicted that dispersing larvae encounter outflow along the western side of Drygalski Trough. The outflow advects larvae towards the shelf‐break, and mixing with trough inflow facilitates return toward the inner shelf. To examine the hypothesis, we compared samples of P. antarctica collected near Coulman Island in the outflow, along Crary Bank in the inflow, and a third set taken over the rest of the Ross Sea. We ruled out misidentification using an innovative genetic validation. Silverfish larvae comprised 99.5% of the catch, and the highest population densities were found in Drygalski Trough. The results provided no evidence to reject the population hypothesis. Abundance indices, back‐calculated hatching dates, length distributions and growth were congruent with a unified early life history in the western Ross Sea, constrained by cryopelagic early stages in Terra Nova Bay. By contrast, a sample in the Bay of Whales revealed much smaller larvae, suggesting either a geographically separate population in the eastern Ross Sea, or westward connectivity with larvae spawned nearby by fish sourced from troughs upstream in the Amundsen Sea. These results illustrate how hypotheses that integrate population structure with life history can provide precise spatial predictions for subsequent testing.
    Type of Medium: Online Resource
    ISSN: 1054-6006 , 1365-2419
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 1214985-8
    detail.hit.zdb_id: 2020300-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Scientific Reports Vol. 8, No. 1 ( 2018-12-14)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-12-14)
    Abstract: The Antarctic silverfish ( Pleuragramma antarctica ) is a critically important forage species with a circumpolar distribution and is unique among other notothenioid species for its wholly pelagic life cycle. Previous studies have provided mixed evidence of population structure over regional and circumpolar scales. The aim of the present study was to test the recent population hypothesis for Antarctic silverfish, which emphasizes the interplay between life history and hydrography in shaping connectivity. A total of 1067 individuals were collected over 25 years from different locations on a circumpolar scale. Samples were genotyped at fifteen microsatellites to assess population differentiation and genetic structuring using clustering methods, F -statistics, and hierarchical analysis of variance. A lack of differentiation was found between locations connected by the Antarctic Slope Front Current (ASF), indicative of high levels of gene flow. However, gene flow was significantly reduced at the South Orkney Islands and the western Antarctic Peninsula where the ASF is absent. This pattern of gene flow emphasized the relevance of large-scale circulation as a mechanism for circumpolar connectivity. Chaotic genetic patchiness characterized population structure over time, with varying patterns of differentiation observed between years, accompanied by heterogeneous standard length distributions. The present study supports a more nuanced version of the genetic panmixia hypothesis that reflects physical-biological interactions over the life history.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geoscience Communication, Copernicus GmbH, Vol. 3, No. 1 ( 2020-04-21), p. 89-97
    Abstract: Abstract. Early-career scientists (ECSs) are a large part of the workforce in science. While they produce new scientific knowledge that they share in publications, they are rarely invited to participate in the peer-review process. Barriers to the participation of ECSs as peer reviewers include, among other things, their lack of visibility to editors, inexperience in the review process and lack of confidence in their scientific knowledge. Participation of ECSs in group reviews, e.g. for regional or global assessment reports, provides an opportunity for ECSs to advance their skill set and to contribute to policy-relevant products. Here, we present the outcomes of a group peer review of the First Order Draft of the Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC). Overall, PhD students spent more time on the review than those further advanced in their careers and provided a similar proportion of substantive comments. After the review, participants reported feeling more confident in their skills, and 86 % were interested in reviewing individually. By soliciting and including ECSs in the peer-review process, the scientific community would not only reduce the burden carried by more established scientists but also permit their successors to develop important professional skills relevant to advancing climate science and influencing policy.
    Type of Medium: Online Resource
    ISSN: 2569-7110
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2924602-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Polar Biology Vol. 44, No. 7 ( 2021-07), p. 1391-1399
    In: Polar Biology, Springer Science and Business Media LLC, Vol. 44, No. 7 ( 2021-07), p. 1391-1399
    Abstract: Defining the impact of anthropogenic stressors on Antarctic wildlife is an active aim for investigators. Telomeres represent a promising molecular tool to investigate the fitness of wild populations, as their length may predict longevity and survival. We examined the relationship between telomere length and human exposure in Adélie penguin chicks ( Pygoscelis adeliae ) from East Antarctica. Telomere length was compared between chicks from areas with sustained human activity and on neighboring protected islands with little or no human presence. Adélie penguin chicks from sites exposed to human activity had significantly shorter telomeres than chicks from unexposed sites in nearby protected areas, with exposed chicks having on average 3.5% shorter telomeres than unexposed chicks. While sampling limitations preclude our ability to draw more sweeping conclusions at this time, our analysis nonetheless provides important insights into measures of colony vulnerability. More data are needed both to understand the proximate causes (e.g., stress, feeding events) leading to shorter telomeres in chicks from human exposed areas, as well as the fitness consequences of reduced telomere length. We suggest to further test the use of telomere length analysis as an eco-indicator of stress in wildlife among anthropized sites throughout Antarctica.
    Type of Medium: Online Resource
    ISSN: 0722-4060 , 1432-2056
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1478942-5
    detail.hit.zdb_id: 584850-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Global Change Biology, Wiley, Vol. 29, No. 21 ( 2023-11), p. 5999-6001
    Abstract: Geoscientists and ecologists alike must confront the impact of climate change on ecosystems and the services they provide. In the marine realm, major changes are projected in net primary and export production, with significant repercussions on food security, carbon storage, and climate system feedbacks. However, these projections do not include the potential for rapid linear evolution to facilitate adaptation to environmental change. Climate genomics confronts this challenge by assessing the vulnerability of ecosystem services to climate change. Because DNA is the primary biological repository of detectable environmentally selected mutations (showing evidence of change before impacts arise in morphological or metabolic patterns), genomics provides a window into selection in response to climate change, while also recording neutral processes deriving from stochastic mechanisms (Lowe et al., Trends in Ecology & Evolution , 2017; 32:141–152). Due to the revolution afforded by sequencing technology developments, genomics can now meet ecologists and climate scientists in a cross‐disciplinary space fertile for collaborations. Collaboration between geoscientists, ecologists, and geneticists must be reinforced in order to combine modeling and genomics approaches at every scale to improve our understanding and the management of ecosystems under climate change. To this end, we present advances in climate genomics from plankton to larger vertebrates, stressing the interactions between modeling and genomics, and identifying future work needed to develop and expand the field of climate genomics.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Advances in Geosciences, Copernicus GmbH, Vol. 53 ( 2020-03-27), p. 1-14
    Abstract: Abstract. Acquiring not only field-specific knowledge but also a set of transferable professional skills becomes increasingly important for Early Career Scientists (ECS) in Geosciences and other academic disciplines. Although the need for training in transferable skills adds to the work-load of an individual Early Career Scientist, it is often neglected within the traditional academic environments. International Early Career Networks (ECN) are global voluntary communities of early career scientists aiming (i) to advocate for early stage researchers; and (ii) to advance the careers of their members by raising their profiles and training them in specific transferable skills, such as networking, collaborating and outreach. Accordingly, ECN can be a tool to move beyond institutional barriers and to improve the inclusion of ECS into the international scientific community. In 2019 we conducted three surveys in order to assess ECN from the perspective of its members and regarding the structures of different ECN within a specific discipline and across disciplines. We use the survey results alongside with case studies from well-established and long term networks to elucidate the attributes that make a successful, sustainable ECN. Important characteristics of these international ECN include (1) developing the ECN organizational schemes to promote early career scientists within a specific discipline and across disciplines, (2) scoping for members needs, evaluating the performance of the network, and adapting to feedback, (3) continuity of the organizing committee by ensuring representation of different stages of ECS, and (4) diverse membership to provide strong foundational and personnel support within the network. These characteristics can support the development of best practices for developing ECN successfully, which can guide existing and future networks within Geosciences and other scientific disciplines.
    Type of Medium: Online Resource
    ISSN: 1680-7359
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2625759-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...