GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 4938-4938
    Abstract: Background: The integrated stress response (ISR) is a major adaptive pathway stress response pathway and plays an important role in cell fate determination in response to stress. Oncogene addicted tumors are under high levels of stress, both extrinsic as well as intrinsic, and are dependent on a well-balanced ISR to cope with the high metabolic demands for accelerated growth. The ISR is a double edge sword of survival and cell death, and depending on context, activation of the ISR kinase GCN2 can have either cytoprotective or cytotoxic effects. Activation of GCN2 was identified as a resistance mechanism to asparaginase (ASNase) in asparagine synthetase (ASNS)-low leukemic cells and MAPK-driven solid tumors.1-3 The inhibition of GCN2 in the context of ASNase-resistant leukemic cells can be pharmacologically leveraged to induce anti-tumoral effects. Methods: Modulation of ISR kinases was characterized using enzymatic assays. Kinome selectivity profiling was determined using enzymatic and cellular assays. ISR pathway modulation was assessed using cellular assays of phospho-GCN2 and ATF4 by Western blot or ELISA under basal, ASNase-treated, or amino acid starvation conditions. Re-sensitization of leukemic cells to ASNase was tested in cell proliferation assays in vitro. In vivo compound-mediated reversal of ASNase-induced upregulation of tumoral ATF4 was determined in a leukemia PK/PD xenograft model. Inhibition of tumor growth was determined in leukemia xenograft models in vivo. Results: DP-9024 was designed as a selective and potent modulator of PERK and GCN2. DP-9024 was found to reverse ASNase-mediated upregulation of ISR readouts (phospho-GCN2 and ATF4) in leukemic cells in vitro. Additionally, DP-9024-mediated inhibition of GCN2 was found to re-sensitize leukemic cells to ASNase in vitro. In vivo asparagine depletion by Leunase (L-asparaginase) led to upregulation of ATF4 in leukemia tumors in a PK/PD xenograft model and oral dosing of DP-9024 reversed Leunase-mediated upregulation of tumoral ATF4 down to basal levels. Importantly, we found that DP-9024-mediated inhibition of GCN2 strongly synergized with ASNase in vivo, leading to potent inhibition of tumor growth in leukemic xenografts and causing a reversal of ASNase resistance in leukemic tumors in vivo. Conclusions: The ISR kinase GCN2 was identified as a resistance mechanism to ASNase in ASNS-low leukemic cells. Inhibition of the ISR pathway through the potent and selective small molecule modulator of GCN2, DP-9024, synergized with ASNase and re-sensitized leukemic cells to amino acid withdrawal in vitro as well as in leukemic xenograft models in vivo. Re*****ferences: Nakamura et al. 2018. PNAS 115(33):E7776-E7785 Apfel et al. 2021. ACS Pharamacology and Trans Sci 4(1):327-337 Gwin et al. 2018. Cancer Cell 33(1):91-107 Citation Format: Gada Al-Ani, Kristin M. Elliott, Qi Groer, Aaron J. Rudeen, Patrick C. Kearney, Jeffery D. Zwicker, Yu Mi Ahn, Stacie L. Bulfer, Cale L. Heiniger, Molly M. Hood, Salim Javed, Joshua W. Large, Max D. Petty, Kristen L. Stoltz, Bertrand Le Bourdonnec, Bryan D. Smith, Daniel L. Flynn. DP-9024, an investigational small molecule modulator of the integrated stress response kinase GCN2, synergizes with asparaginase therapy in leukemic tumors. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4938.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1639-1639
    Abstract: Background: The Integrated Stress Response (ISR) is one of the major adaptive stress response pathways in cancer and plays an important role in cell fate determination. Oncogene addicted solid tumors are under high stress levels, both extrinsic as well as intrinsic, and are dependent on a well-balanced ISR pathway activity to cope with the high demand for accelerated growth. The ISR is well known to be a double edge sword of survival and cell death and depending on context, the activation of the ISR kinase, GCN2, and downstream pathway can have either cytoprotective or cytotoxic effects. Given the context-dependent nature of the ISR pathway, the inhibition or stimulation of GCN2 in solid tumors can be pharmacologically leveraged to induce anti-tumoral effects. Methods: Modulation of ISR kinases was characterized using enzymatic assays. Kinome selectivity profiling was determined using enzymatic and cellular assays. Cellular modulation of the ISR pathway (phospho-GCN2, ATF4, CHOP) or the apoptosis pathway (PARP and Caspase3/7) was assessed via Western blot or ELISA. In vivo upregulation of tumoral ATF4 was determined in a fibrosarcoma PK/PD xenograft model. In vivo inhibition of tumor growth was determined in solid tumor xenografts. Results: Selective and potent modulators of GCN2 kinase with favorable drug-like properties were designed. These compounds were found to upregulate components of the ISR pathway (phospho-GCN2, ATF4, CHOP). The mechanism by which GCN2 modulator DP-9149 treatment induced the ISR pathway was found to be through the direct binding and activation of GCN2. Upregulation of the ISR pathway downstream of GCN2 led to induction of a programmed cell death pathway in oncogene-driven solid tumor cell lines in vitro. DP-9149-mediated activation of the ISR pathway led to cell growth arrest both as a single agent and in combination with standard-of-care (SOC) agents. Furthermore, oral dosing of DP-9149 in RAS mutant and other oncogene-driven xenograft models in vivo induced ATF4, and significantly inhibited tumor growth as a single agent and in combination with SOC agents. Additionally, therapeutic agents targeting the tumor microenvironment, including anti-angiogenic agents, synergized with DP-9149 to induce tumor regressions in vivo. Conclusions: The ISR is a targetable vulnerability in oncogene addicted solid tumors. Upregulating the ISR by paradoxical activation of the ISR family member kinase, GCN2, by DP-9149 can be leveraged as a novel mechanism to cause anti-tumoral effects in solid tumors in vitro and in vivo, likely through the induction of an unresolved stress response. In particular, DP-9149 exhibited robust activity in RAS mutant cancers and in VHL-mutant renal cancers as a single agent and in combination with SOC agents in vivo. Citation Format: Gada Al-Ani, Qi Groer, Kristin M. Elliott, Aaron J. Rudeen, Patrick C. Kearney, Jeffery D. Zwicker, Yu Mi Ahn, Stacie L. Bulfer, Cale L. Heiniger, Molly M. Hood, Salim Javid, Joshua W. Large, Max D. Petty, Kristen L. Stoltz, Bertrand Le Bourdonnec, Bryan D. Smith, Daniel L. Flynn. DP-9149, an investigational small molecule modulator of the Integrated Stress Response kinase GCN2, pre-clinically causes solid tumor growth inhibition as a single agent and regression in combination with standard of care agents [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1639.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 4033-4033
    Abstract: Introduction: Gastrointestinal stromal tumors (GISTs) are typically driven by primary mutations in KIT exons 9 or 11. Heterogeneous drug-resistant secondary mutations arise in patients treated with FDA approved KIT inhibitors, including imatinib and sunitinib. Drug resistant secondary mutations are found at multiple regions in the ATP pocket (encoded by exons 13 and 14) or activation switch (encoded by exons 17 and 18) of KIT kinase. In addition, multiple drug-resistant clones can arise within a tumor or in metastatic tumor sites. An inhibitor that can broadly and potently inhibit the spectrum of KIT mutations is highly sought. Ripretinib has been FDA approved as a 4th line treatment for GIST and has broad activity against KIT mutations, including clinical potency in patients with mutations in KIT exons 11, 17, or 18. DCC-3009 was designed as a next generation KIT inhibitor that broadly and potently inhibits primary KIT mutations in exons 9 and 11 and secondary drug-resistant mutations across exons 13, 14, 17, and 18. DCC-3009 is a potent and selective inhibitor in enzyme and cell-based assays, and has demonstrated efficacy in xenograft models driven by drug resistant KIT mutations. Methods: DCC-3009 was tested for inhibition of KIT mutants using standard enzyme and cell-based assays. Levels of phosphorylated KIT were determined by Western blot or ELISA. Proliferation was measured using the fluorescent dye resazurin. KIT mutant xenograft or patient-derived xenograft models were performed at Crown Biosciences or Labcorp, AAALAC accredited facilities, with the approval of Animal Care and Use Committees. Results: In BaF3 cells transfected with KIT mutants, DCC-3009 was shown to potently inhibit the spectrum of known primary and secondary drug-resistant mutations in GIST. The pan-mutant KIT profile of DCC-3009 was shown in vitro to be superior to 2nd and 3rd line standard of care therapies sunitinib and regorafenib. DCC-3009 was selective for KIT when screened against a large panel of kinases. DCC-3009 has optimized pharmaceutical properties for oral administration. In pharmacokinetic/pharmacodynamic studies DCC-3009 achieved sufficient free drug levels to significantly inhibit drug-resistant KIT mutants for 12 hr post dose. In xenograft studies, treatment with DCC-3009 twice daily led to tumor regression in drug-resistant models with KIT exon 9/13, 11/13 or 11/17 mutations. Conclusions: DCC-3009 is a pan-exon mutant KIT inhibitor exhibiting high potency in KIT mutants in pre-clinical models spanning exons 9, 11, 13, 14, 17 and 18. In vivo, DCC-3009 exhibited efficacy in drug-resistant models with KIT exon 9/13, 11/13 or 11/17 mutations. Based on this profile, DCC-3009 has entered formal preclinical development. Citation Format: Bryan D. Smith, Subha Vogeti, Timothy M. Caldwell, Hanumaiah Telikepalli, Yu Mi Ahn, Gada Al-Ani, Stacie L. Bulfer, Andrew Greenwood, Cale L. Heiniger, Joshua W. Large, Cynthia B. Leary, Wei-Ping Lu, Kylie Luther, William C. Patt, Max D. Petty, Yeni K. Romero, Forrest A. Stanley, Kristen L. Stoltz, Daniel C. Tanner, Sihyung Yang, Yu Zhan, Bertrand Le Bourdonnec, Daniel L. Flynn. Pan-exon mutant KIT inhibitor DCC-3009 demonstrates tumor regressions in preclinical gastrointestinal stromal tumor models. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4033.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1640-1640
    Abstract: Background: The Integrated Stress Response (ISR) is a major adaptive stress response pathway in cancer cell maintenance. The ISR kinase family member PERK controls one of the three arms of the Unfolded Protein Response (UPR). The UPR is considered an Achilles’ heel in B-cell cancers. Multiple myeloma (MM) and B-cell lymphomas are dependent on a well-balanced UPR pathway to cope with the high demand for protein folding and their secretory nature. Given the double-edge sword nature of the UPR, the activation of PERK and downstream pathway can have cytoprotective or cytotoxic effects. In B-cell cancers the UPR is at close to maximum cytoprotective capacity, such that further pharmacological stimulation of PERK can potentially be leveraged to cause a cancer cell cytotoxic response and induce antitumoral effects. Methods: Modulation of ISR kinases was characterized using enzymatic assays. Kinome selectivity profiling was determined using enzymatic and cellular assays. Cellular assays of PERK activation assessed ATF4 by ELISA. Cellular assays of GCN2 modulation assessed phospho-GCN2 and ATF4 by Western blot or ELISA (under basal or low amino acid conditions). DP-9024-induced upregulation of components of the ISR/UPR pathway (ATF4, CHOP) or the apoptosis pathway (PARP and Caspase 3/7) was measured by Western blot or ELISA assays. Compound-mediated PERK activation was investigated mechanistically using a cellular nanoBRET dimerization assay. In vivo upregulation of tumoral ATF4 was determined in a MM PK/PD xenograft model. In vivo inhibition of tumor growth was determined in MM and B-cell lymphoma xenografts. Results: DP-9024 was designed as a selective and potent modulator of PERK and GCN2. DP-9024 was found to upregulate the ISR/UPR pathway (ATF4, CHOP). The mechanism by which DP-9024 treatment induced the UPR pathway was found to be through the dimerization and activation of PERK. Upregulation of the UPR pathway downstream of PERK led to induction of apoptosis (PARP and Caspase 3/7) in MM and B-cell lymphoma lines in vitro. DP-9024 mediated activation of the UPR pathway in cell lines with high basal level of endoplasmic reticulum (ER) stress led to growth arrest in combination with FDA approved therapies. Oral dosing of DP-9024 in MM xenograft models induced ATF4, and combination efficacy was observed in MM and B-cell lymphoma xenografts in combination with FDA approved agents in vivo. Conclusions: The ISR/UPR is a targetable vulnerability in cancers with high basal levels of ER stress. DP-9024 increases UPR signaling via activating PERK dimerization. This novel mechanism leads to antitumoral effects in B-cell cancers in vitro and in vivo likely through the induction of unresolved ER stress, which may potentially provide an alternative mechanism to current UPR targeting therapies. Citation Format: Gada Al-Ani, Qi Groer, Aaron J. Rudeen, Kristin M. Elliott, Patrick C. Kearney, Jeffery D. Zwicker, Yu Mi Ahn, Stacie L. Bulfer, Cale L. Heiniger, Molly M. Hood, Salim Javed, Joshua W. Large, Max D. Petty, Kristen L. Stoltz, Bertrand Le Bourdonnec, Bryan D. Smith, Daniel L. Flynn. DP-9024, an investigational small molecule modulator of the Integrated Stress Response kinase PERK, causes B-cell cancer growth inhibition as single agent and in combination with standard-of-care agents [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1640.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 4045-4045
    Abstract: Background: Mutations in the RAS/MAPK pathway are a frequent driver of cancer, with oncogenic RAS or RAF mutations occurring in & gt;30% of all cancers. First generation BRAF inhibitors are approved for use for tumors with Class I BRAF mutations (V600X). However, these drugs are not efficacious in RAF dimer mutant and RAS mutant cancers due to paradoxical activation of RAF dimers. Herein, we describe DCC-3084, a potent and selective investigational Switch Control inhibitor of BRAF and CRAF kinase dimers that targets Class I, II and III BRAF mutations, BRAF fusions, and BRAF/CRAF heterodimers. DCC-3084 combines with inhibitors of additional nodes in the MAPK pathway to potentially target a large unmet medical need in RAS and RAF mutant cancers. Methods: Inhibition of RAF kinases, including off-rate analysis, was measured using recombinant enzymes. X-ray crystallography was used for structure-based drug design. Cellular proliferation was measured using resazurin to monitor cell viability. Synergy in cells was measured using BLISS scores and curve shift analysis. Inhibition of ERK or RSK phosphorylation was measured by AlphaLISA or ELISA. Pharmacokinetics (PK) in the plasma, brain and CSF compartments were measured following oral dosing in Wistar rats. RAF and RAS mutant mouse xenograft models were used to assess PK, pharmacodynamics (PD), and efficacy. Results: DCC-3084 is a potent and selective Switch Control inhibitor of RAF dimers that was designed to target Class I, II, III BRAF mutants, BRAF fusions, and BRAF/CRAF heterodimers. DCC-3084 inhibits BRAF and CRAF, exhibiting slow off-rates (t1/2 & gt;20 hr). Potent single-agent inhibition of MAPK pathway signaling and cellular proliferation was observed in a wide range of Class I, II, III BRAF and BRAF fusion altered cell lines. Synergy was observed in combination with inhibitors of other nodes in the RAS/MAPK pathway in RAS mutant cell lines. DCC-3084 was demonstrated to be CNS penetrable and exhibited dose dependent oral exposure with robust inhibition of the RAS/MAPK pathway in PK/PD models. DCC-3084 accumulated in tumor tissue relative to plasma, further demonstrating a favorable pharmaceutical profile. Oral treatment of DCC-3084 as a single agent resulted in tumor regression in BRAF mutant and KRAS Q61K mutant mouse xenograft models and tumor growth inhibition in KRAS G12C/D mutant models. Additionally, DCC-3084 in combination with a MEKi resulted in tumor regression in KRAS mutant models. Conclusions: The Switch Control inhibitor DCC-3084 broadly inhibits Class I, II and III BRAF mutations, BRAF fusions, and BRAF/CRAF heterodimers leading to tumor regression in preclinical models. The overall preclinical profile of DCC-3084 supports IND-enabling activities towards clinical development in a key area of unmet medical need in RAS and RAF mutant cancers. Citation Format: Stacie L. Bulfer, Bertrand Le Bourdonnec, Jeffery D. Zwicker, Yu Mi Ahn, Gada Al-Ani, Hikmat Al-Hashimi, Chase Crawley, Kristin M. Elliott, Saqib Faisal, Andrew M. Harned, Cale L. Heiniger, Molly M. Hood, Salim Javed, Michael Kennedy, Joshua W. Large, Cynthia B. Leary, Wei-Ping Lu, Kylie Luther, Max D. Petty, Hunter R. Picard, Justin T. Proto, Yeni K. Romero, Forrest A. Stanley, Kristen L. Stoltz, Daniel C. Tanner, Hanumaiah Telikepalli, Mary J. Timson, Lakshminarayana Vogeti, Subha Vogeti, Sihyung Yang, Lexy H. Zhong, Bryan D. Smith, Daniel L. Flynn. DCC-3084, a RAF dimer inhibitor, broadly inhibits BRAF class I, II, III, BRAF fusions, and RAS-driven solid tumors leading to tumor regression in preclinical models. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 4045.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 1613-1613
    Abstract: Background: The Integrated Stress Response (ISR) is a major adaptive stress response pathway in cancers. The ISR kinase family member PERK controls one of the three arms of the Unfolded Protein Response (UPR). The UPR is considered an Achilles’ heel in B-cell cancers. Myelomas and B-cell lymphomas are dependent on a well-balanced UPR pathway to cope with the high demand for protein folding and their secretory nature. Given the double-edge sword nature of the UPR, the activation of PERK and downstream pathway can have cytoprotective or cytotoxic effects. In B-cell cancers the UPR is at close to maximum cytoprotective capacity, such that further pharmacological stimulation of PERK drives a cytotoxic outcome leveraged to induce antitumoral effects. Methods: Recombinant WT and mutant PERK constructs were assayed in the presence of DP-9024. Structures of compound-bound PERK were determined by X-ray crystallography. Kinome profiling was determined using enzymatic and cellular assays. Cellular modulation of the ISR/UPR pathway (phospho-GCN2, PERK, ATF4, CHOP) or the apoptosis pathway (cleaved-PARP, cleaved-Caspase 3/7) was measured by Western blot or ELISA. The level of DP-9024-induced PERK activation was determined using a cellular nanoBRET dimerization assay utilizing WT and mutant PERK constructs. Results: DP-9024 was designed as a selective and potent modulator of PERK and GCN2. DP-9024 was found to upregulate the ISR/UPR pathway (ATF4, CHOP). The mechanism by which DP-9024 induced the UPR pathway was found to be through dimerization-dependent activation of PERK. Utilizing recombinant biophysical and cellular assays of WT and mutant PERK constructs, we found that DP-9024 directly binds to a switch control site in the kinase domain of PERK that governs dimerization and that the binding of the compound to one monomer was sufficient to induce dimerization-mediated activation of the unoccupied monomer. This paradoxical stimulation of the unbound PERK monomer is reminiscent of the phenomenon observed with some BRAF inhibitors.1 X-ray crystallography studies revealed that PERK crystalizes as a dimer with both monomers bound to compound, due to the high concentration of compound used during crystallization. DP-9024-mediated PERK dimerization and transactivation led to the activation of downstream pathways (ATF4, CHOP), apoptotic pathway (Caspase 3/7, PARP1), and growth arrest in cell lines with high levels of endoplasmic reticulum (ER) stress such as multiple myeloma and B-cell lymphoma. Conclusions: Paradoxical stimulation of the ISR family member kinase PERK, through direct binding and dimerization by DP-9024, led to unresolved ER stress that can potentially be leveraged as a novel mechanism to induce growth arrest in UPR vulnerable cancers, including myelomas and B-cell lymphomas. References: 1. Poulikakos et al. 2010. Nature 464:427-30 Citation Format: Gada Al-Ani, Aaron J. Rudeen, Qi Groer, Kristin M. Elliott, Patrick C. Kearney, Jeffery D. Zwicker, Yu Mi Ahn, Stacie L. Bulfer, Cale L. Heiniger, Molly M. Hood, Salim Javid, Joshua W. Large, Max D. Petty, Kristen L. Stoltz, Bertrand Le Bourdonnec, Bryan D. Smith, Daniel L. Flynn. Dimerization-induced activation of the integrated stress response kinase PERK by an investigational small molecule modulator, DP-9024 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1613.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Cell, Elsevier BV, Vol. 35, No. 5 ( 2019-05), p. 738-751.e9
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. B129-B129
    Abstract: Background: Cancer cells activate autophagy, a catabolic process to resupply nutrients and recycle damaged organelles, in order to survive stresses such as limited nutrients and hypoxia, or chemotherapy treatments. RAS mutant cancers, in particular, have been found to require autophagy for tumor growth and survival.1,2 Treating RAS mutant tumors with inhibitors of the downstream MAPK pathway has been largely unsuccessful, as these drugs have been shown to further stimulate autophagy, allowing for tumor cell survival.3,4 Inhibiting autophagy in combination with MAPK pathway inhibition may represent a possible new treatment paradigm for RAS mutant cancers. Proof-of-concept for this strategy was obtained in cancer models and in a RAS mutant pancreatic cancer patient by blocking autophagy with derivatives of chloroquine, in combination with MAPK inhibitors.3,4 Chloroquines indirectly block autophagy via disruption of lysosomal function, which may also affect important normal cellular processes. Chloroquines accumulate in tissues, notably the brain, where autophagy may be vital for neuronal health. The potential exists to more selectively inhibit autophagy by targeting specific components of the autophagy pathway. ULK1/2 kinases initiate autophagy and provide the potential for a targeted approach for selectively inhibiting autophagy in RAS mutant cancers. Herein, we describe preclinical studies with the ULK inhibitor DCC-3116, designed as a potential inhibitor of autophagy in RAS mutant cancers. Methods: In vitro kinase assays were performed using cellular levels of ATP (1 mM) and a peptide substrate. In cell assays, ULK activity was assessed using an ELISA for phosphorylated ATG13. Autophagosome formation was measured using the dye, Cyto-ID. Autophagic flux was assessed using cells expressing the autophagy protein LC3 fused to luciferase. The synergy of DCC-3116 in combination with MAPK inhibitors was assessed in 2D or 3D cell growth assays. Xenograft models were used to assess pharmacokinetics (PK) and pharmacodynamics (PD), as well as efficacy in vivo. Results: DCC-3116 is a potent and selective inhibitor of ULK1/2, inhibiting no other kinases within 30-fold of ULK potency, and only 5 kinases within 100-fold. DCC-3116 inhibited phosphorylation of the ULK substrate ATG13 in cancer cell assays. DCC-3116 inhibited autophagosome formation, as well as degradation of the autophagy marker LC3. DCC-3116 exhibited synergy in vitro in combination with MAPK pathway inhibitors in inhibiting cancer cell growth. In PK/PD models, oral doses of DCC-3116 led to sustained inhibition of ATG13 phosphorylation. DCC-3116, in combination with MAPK inhibitors, exhibited additivity or synergy in inhibiting tumor growth in xenograft models. DCC-3116 exhibited low brain penetration in rats, minimizing inhibition of CNS autophagy. Conclusion: Selectively blocking autophagy via inhibition of ULK kinases, in combination with MAPK pathway inhibition, is a promising therapeutic approach for RAS mutant cancers. DCC-3116 warrants further study as an inhibitor of autophagy, and has been selected as a candidate for potential development in the treatment of RAS mutant cancers. Guo et al., Genes and Dev. 2011; 25: 460 Yang et al., Genes and Dev. 2011; 25: 717 Bryant et al., Nature Med. 2019; 25: 628 Kinsey et al., Nature Med. 2019; 25: 620 Citation Format: Bryan D Smith, Lakshminarayana Vogeti, Anu Gupta, Jarnail Singh, Gada Al-Ani, Stacie L Bulfer, Timothy M Caldwell, Mary J Timson, Subha Vogeti, Yu Mi Ahn, Hikmat Al-Hashimi, Chase K Crawley, Cale L Heiniger, Cynthia B Leary, Justin T Proto, Quanrong Shen, Hanumaiah Telikepalli, Karen Yates, Wei-Ping Lu, Daniel L Flynn. Preclinical studies with DCC-3116, an ULK kinase inhibitor designed to inhibit autophagy as a potential strategy to address mutant RAS cancers [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr B129. doi:10.1158/1535-7163.TARG-19-B129
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bioorganic & Medicinal Chemistry Letters, Elsevier BV, Vol. 74 ( 2022-10), p. 128929-
    Type of Medium: Online Resource
    ISSN: 0960-894X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1501505-1
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3925-3925
    Abstract: Introduction: Activating mutations and other genetic alterations in KIT and PDGFRA receptor tyrosine kinases have been identified in certain cancers and proliferative diseases, including most cases of gastrointestinal stromal tumors (GIST) and systemic mastocytosis, and small percentages of gliomas, lung cancer, and leukemias. The treatment of metastatic GIST has been transformed with KIT inhibitors, but heterogeneous drug-resistant mutations arise during therapy, with individual patients often having multiple KIT mutations in different tumor sites. PDGFRA variants in GIST and other cancers also have a significant unmet medical need. DCC-2618 is a kinase switch control inhibitor that potently inhibits the spectrum of exon 9, 11, 13, 14, 17 and 18 mutations in KIT and exons 12, 14 and 18 mutations in PDGFRA. DCC-2618 has been designed to bind as a type II kinase inhibitor that forces the mutant kinases, including strongly activated mutants such as D816V KIT and D842V PDGFRA, into inactive conformations. DCC-2618 has been observed to be potent in enzyme and cell-based assays, and has demonstrated consistent efficacy in xenograft models driven by PDGFRA and KIT alterations. Methods: DCC-2618, and an active human metabolite, DP-5439, were tested for inhibition of PDGFRA and KIT mutants using standard enzyme and binding assays, and a variety of cell-based assays. Levels of phosphorylated PDGFRA and KIT were determined by Western blot or ELISA. Proliferation was measured using the fluorescent dye resazurin. An x-ray crystal structure of an analog of DCC-2618 was determined at Emerald Biostructures. The H1703 PDGFRA-amplified lung cancer and GIST T1 mutant KIT xenograft models were performed at MI Bioresearch. A GIST PDX exon 17 mutant KIT xenograft model was run at Molecular Response. Results: DCC-2618 and the metabolite DP-5439 inhibited KIT and PDGFRA variants with nanomolar potency. In CHO cells transfected with KIT or PDGFRA variants, DCC-2618 was shown to inhibit the full spectrum of the clinically relevant primary and refractory drug-resistant mutations tested. DCC-2618 also inhibited phosphorylation of KIT or PDGFRA in cell lines with various drug-resistant KIT mutations or PDGFRA alterations. DCC-2618 was compared to the FDA-approved KIT inhibitors imatinib, sunitinib, regorafenib, and midostaurin, as well as other KIT and PDGFRA inhibitors. In vivo, treatment with DCC-2618 led to tumor regressions in KIT- and PDGFRA-driven xenograft models. Conclusions: DCC-2618 has been observed to be a potent inhibitor of KIT and PDGFRA alterations, including mutants, fusions, and amplifications. Based on this profile, DCC-2618 may have utility in the treatment of KIT and PDGFRA-driven cancers including GIST, systemic mastocytosis, and a subset of lung cancers, gliomas, and leukemias. DCC-2618 is currently in a Phase 1 clinical trial in KIT and PDGFRA driven cancers (ClinicalTrials.gov Identifier: NCT02571036). Citation Format: Bryan D. Smith, Michael D. Kaufman, Anu Gupta, Cynthia B. Leary, Wei-ping Lu, Stacie L. Bulfer, Gada Al-Ani, Jarnail Singh, Subha Vogeti, Michael C. Heinrich, Daniel L. Flynn. Inhibition of oncogenic and drug-resistant PDGFRA and KIT alterations by DCC-2618 [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3925.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...