GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 869-869
    Abstract: Background: Many pediatric T-cell acute lymphoblastic leukemia patients harbor mutations in IL7Ra or downstream molecules encoded by JAK1, JAK3, N-RAS, K-RAS, NF1, AKT, and PTEN. These mutated signaling molecules can contribute to leukemia by disturbing a multitude of cellular processes such as the cell cycle, epigenetics, apoptosis, or affecting other important signal transduction pathways. Aims: We aimed to determine the overall incidence of JAK family mutations in a large cohort of T-ALL patients. We also aimed to generate a 3D JAK1 model including known and newly identified JAK mutations in order to better understand how these contribute to JAK kinase activity and the transformation of cells. Methods: We screened 146 pediatric T-ALL patient samples for mutations in the FERM, pseudokinase and kinase domains of the Janus kinase gene family (JAK1-3, TYK2). To establish a 3D JAK1 model, we superimposed individual pseudokinase and kinase crystallographic structures on the homologous TYK2 pseudokinase-kinase structure. We visualized JAK mutations and their effects on the 3D structure. We modified the IL3-dependent Ba/F3 cell line to express JAK mutant or wild type genes upon induction by doxycycline. We tested these Ba/F3 derivative lines for transforming ability, signaling, and resistance to various inhibitors in the absence of IL3. Results: JAK1 or JAK3 mutations were found in 10 patients; no mutations were found in JAK2 or TYK2. We found JAK1 and JAK3 mutations as previously reported, but also identified amino acid substitutions as a result of novel JAK1 mutations including V427M, L624YPILKV, E668Q, P815S, and T901G. Our novel 3D model of JAK1 places most mutations in one of two crucial pseudokinase-kinase interaction sites, which can weaken the interaction and facilitate constitutive kinase activity. One interaction is between the hinge region of the pseudokinase domain and the loop in the kinase domain, which is supported by four salt bridges. Mutations in T-ALL disrupting these salt bridges include E668Q, R724H and its JAK3 equivalent R657Q, and T901G. The second interaction with the kinase domain is formed by a helical domain in the pseudokinase domain, located just upstream of the conserved F575-F636-V658 triad. This F-F-V triad is predicted to act as a structural switch that controls the catalytic activity of JAK kinases. Various mutations occur in the direct vicinity and can affect the function of this switch. V658F in T-ALL and its JAK2 equivalent V617F in polycythemia vera patients are mutations in this triad. The frequent JAK3 mutation M511I in T-ALL flanks the F513 residue (equivalent of JAK1 F575) and also affects the F-F-V triad. The L624YPILKV insertion mutation is located in a loop near the helical domain, which may also subtly compromise the F-F-V triad structural switch leading to derepression of the kinase domain. Expression of mutant JAK genes-in contrast to the wild type genes-transforms Ba/F3 cells by supporting IL3-independent growth, and by activating downstream RAS-MEK-ERK and PI3K-AKT pathways. This pathway activation as a result of ligand-independent mutant JAK kinase activity was confirmed by measuring phospho-proteins including p-MEK, p-ERK, p-AKT, p-mTOR, and p-p70S6K, and can be blocked by JAK inhibitors. Notably, JAK3 mutants signal significantly weaker than JAK1 mutants, possibly due to different dependence on (endogenous) receptors that normally mediate wild type JAK signaling. Summary/Conclusion: In a 3D model, we show that JAK mutations are located in critical interface regions between the pseudokinase and kinase domains, maintaining the kinase in an open, active confirmation. The inducible Ba/F3 model system confirms the transforming capacity of JAK mutations, reveals constitutive active downstream signaling, and is also suitable to test the effect of various inhibitors. The visualization of various JAK mutations in a 3D model and how these contribute to kinase activity provides insight in how mutant JAK could be inhibited, helping guide the development of new small molecule inhibitors of mutant JAKs. Disclosures Buijsman: Netherlands Translational Research Center B.V.: Equity Ownership, Other: founder and shareholder. Zaman:Netherlands Translational Research Center B.V.: Equity Ownership, Other: founder and shareholder.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Lancet Oncology, Elsevier BV, Vol. 10, No. 2 ( 2009-02), p. 125-134
    Type of Medium: Online Resource
    ISSN: 1470-2045
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 2049730-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1409-1409
    Abstract: Background: T-cell acute lymphoblastic leukemia is characterized by clonal and mutual exclusive chromosomal rearrangements that recurrently activate TAL1, LMO2, TLX1, NKX2-1, TLX3, HOXA or MEF2C oncogenes. Most of these translocations or chromosomal rearrangements occur as erroneous D-J or V-DJ rearrangement attempts of T-cell receptor beta (TCRB) or TCR alpha/delta (TCRAD) genes, mostly positioning oncogenes under the transcriptional control of TCR enhancer elements. Alternatively, oncogenes can also be activated as consequence of BCL11B chromosomal rearrangements. Although many oncogenes are known in T-ALL, the driving oncogenic lesion in particular T-ALL cases remains unknown. Aims: In this study, we aimed to clone reciprocal breakpoint sequences to elucidate cellular mechanisms that lead to recurrent BCL11B -TLX3 chromosomal translocations. Moreover, we want to identify oncogene candidates in various T-ALL patient samples with BCL11B-, TCRB- or TCRAD-translocations for which the candidate oncogene so far has not been identified. Methods: We used Targeted Locus Amplification procedure, a recently developed method that relies on the crosslinking of DNA in live cells, DNA digestion and re-ligation to allow formation of circular DNA ligation fragments and inverted polymerase chain reaction amplification from specific view-point loci. Amplified DNA fragments are sequenced by next generation sequencing, allowing sequence identification in a region covering 2MB around selected regions of interest, including TLX3, TLX1, TAL1, LMO2, BCL11B, TCRAD (TRAJ61), TCRB (TCRBC2) Results: TLA was successfully performed on 10 T-ALL patients having FISH validated TAL1 translocations (2 patients), LMO2 translocations (3 patients), TLX3 translocations (3 patients), TLX1 translocations (2 patients) or an inversion targeting NKX2.1 (1 patient). Analysis of both TAL1 translocated cases revealed a TAL1-TCRAD genomic fusion due to a classical t(1;14)(q32;q11) in 1 patient, but surprisingly reveal a TAL1-TCF7 genomic fusion due to a t(1;5)(q32;q31.1) chromosomal translocation in the second patient. For the LMO2 translocated cases, two patients showed classical LMO2-TCRAD (t(11;14)(p13;q11)) or LMO2-TCRB (t(7;11)(q35;p13) translocations, whereas the third patient presented with an unusual LMO2-BCL11B genomic fusion due to a t(11;14)(p13;q32). Two out of 3 TLX3-translocated patients had classical t(5;14)(q35;q32) translocations, whereas the TLX3 gene in the third patient was rearranged to the calcyphosine-like gene (CAPSL, which flanks the IL7Ra gene) on chromosomal 5p13.2 due to a t(5;5)( p13.2;q35) or an inv(5). One patient had an inversion on chromosome 14, i.e. inv(14)(q11;q13), that brings the NKX2.1 oncogene under the transcriptional control of the TCRAD enhancer. Finally, one TLX1-rearranged patient had a classical TLX1-TCRAD translocation, whereas the other presented with a chromosomal inversion involving the chromosomal band 10q24 (which included TLX1), but also revealed a novel translocation involving the centromere protein P gene (CENPP) on chromosome 9q22.31 with the TCRAD locus. Summary/Conclusions: Targeted Locus Amplification identification of chromosomal rearrangements and genomic breakpoint sequences reveals novel complex translocations in 3 out of 10 T-ALL cases analyzed thus far, indicating higher complexity of chromosomal translocations of known T-ALL oncogenes as thus far anticipated. It further proved a useful tool to identify novel translocation partners from various loci such as the TCR or BCL11B genes that are recurrently involved in these chromosomal rearrangements in T-ALL. Cloning of molecular translocation breakpoints of diagnostic T-ALL patient samples may further provide excellent minimal residual disease markers for disease monitoring during the course of treatment. Disclosures Splinter: Cergentis BV: Employment. van Min:Cergentis BV: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 445-445
    Abstract: Background: Pediatric T-cell acute lymphoblastic leukemia patients frequently harbor mutations in IL7Ra or downstream molecules encoded by JAK1, JAK3, N-RAS, K-RAS, NF1, AKT, and PTEN. These mutated signaling molecules can contribute to leukemia by disturbing a multitude of cellular processes such as the cell cycle, epigenetics, apoptosis, or affecting other important signal transduction pathways. Aims: We aimed to determine the overall incidence of mutations in IL7Ra and downstream signaling components in a large cohort of pediatric T-ALL patients. In order to find better treatment options for patients with these mutations, we analyzed the effect of selected IL7Ra-pathway inhibitors-individually and in combinations-on downstream signaling and cytotoxicity in Ba/F3 cells expressing each of the mutations. Methods: We sequenced 146 pediatric T-ALL patient samples for mutations in the FERM, pseudokinase and kinase domains of the Janus kinase gene family (JAK1, JAK2, JAK3, TYK2) and hotspot regions of N-RAS and K-RAS. We adapted the IL3-dependent Ba/F3 cell line to express mutant or wild type genes upon induction by doxycycline and assessed cell viability and signaling in the absence of IL3. Various IL7Ra-pathway inhibitors were tested using this system, and the synergy of combined inhibitors was determined by comparing the dose-response curve of different ratios of IC50-based inhibitor concentrations to the curves for each of the single inhibitors. The Combination Index was calculated using Calcusyn™ software. Results: IL7Ra, JAK, RAS, AKT and PTEN mutations are present in approximately 45% of patients and occur in a predominantly mutually exclusive fashion, suggesting they share aberrant activation of similar downstream targets. We found JAK1, JAK3 and RAS mutations as previously reported, but also identified new JAK1 mutations including V427M, L624YPILKV, E668Q, P815S, and T901G. A novel three-dimensional model of JAK1 reveals that mutations in JAK molecules affect important amino acids that are involved in the interaction between the pseudokinase and kinase domains, facilitating constitutive kinase activity. In our doxycycline-inducible IL3-dependent Ba/F3 system, expression of mutant genes-in contrast to the wild type genes-transforms Ba/F3 cells by supporting IL3-independent growth through activation of the RAS-MEK-ERK and PI3K-AKT pathways. We used this system to test the sensitivity to pharmacological inhibitors; IL7Ra and JAK mutant Ba/F3 cells are sensitive to JAK inhibition, so JAK inhibitors such as ruxolitinib may offer therapeutic potential for IL7Ra, JAK1 or most JAK3 mutated T-ALL patients. The RAS and AKT mutants respond to RAS-MEK and PI3K-AKT-mTOR inhibition, respectively, but are-as expected-insensitive to JAK inhibition. Remarkably, IL7Ra and JAK mutants are relatively resistant to downstream RAS-MEK-ERK or PI3K-AKT-mTOR inhibition, indicating that inhibiting just one of these downstream pathways is insufficient. We provide evidence of (cross-)activation of the alternate pathway when one of these pathways is inhibited. Combined inhibition of MEK and PI3K/AKT synergistically prevents proliferation of the IL7Ra- and JAK-mutants by efficiently blocking both downstream signaling pathways. Furthermore, this combined inhibition is cytotoxic in two out of five tested primary T-ALL specimens. Summary/Conclusion: We show that the combined inhibition of MEK and PI3K/AKT leads to strong and synergistic cytotoxic effects in the IL7Ra and JAK mutants and efficiently blocks signaling downstream of both pathways. This inhibitor combination is effective in two out of five primary T-ALL samples. Therefore, the cytotoxic effects of synergistic MEK and PI3K/AKT inhibition should be further explored as a therapeutic option for (relapsed) ALL patients. Disclosures Buijsman: Netherlands Translational Research Center B.V.: Equity Ownership, Other: founder and shareholder. Zaman:Netherlands Translational Research Center B.V.: Equity Ownership, Other: founder and shareholder.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...