GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 7 ( 2022-07), p. E1705-E1719
    Abstract: The decadal time scale (∼1–10 years) bridges the gap between seasonal predictions and longer-term climate projections. It is a key planning time scale for users in many sectors as they seek to adapt to our rapidly changing climate. While significant advances in using initialized climate models to make skillful decadal predictions have been made in the last decades, including coordinated international experiments and multimodel forecast exchanges, few user-focused decadal climate services have been developed. Here we highlight the potential of decadal climate services using four case studies from a project led by four institutions that produce real-time decadal climate predictions. Working in co-development with users in agriculture, energy, infrastructure, and insurance sectors, four prototype climate service products were developed. This study describes the challenge of trying to match user needs with the current scientific capability. For example, the use of large ensembles (achieved via a multisystem approach) and skillfully predicted large-scale environmental conditions, are found to improve regional predictions, particularly in midlatitudes. For each climate service, a two-page “product sheet” template was developed that provides users with both a concise probabilistic forecast and information on retrospective performance. We describe the development cycle, where valuable feedback was obtained from a “showcase event” where a wider group of sector users were engaged. We conclude that for society to take full and rapid advantage of useful decadal climate services, easier and more timely access to decadal climate prediction data are required, along with building wider community expertise in their use.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    IWA Publishing ; 2010
    In:  Journal of Water and Climate Change Vol. 01, No. 1 ( 2010-03), p. 2-
    In: Journal of Water and Climate Change, IWA Publishing, Vol. 01, No. 1 ( 2010-03), p. 2-
    Type of Medium: Online Resource
    ISSN: 2040-2244
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2010
    detail.hit.zdb_id: 2552186-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Climate Dynamics Vol. 55, No. 5-6 ( 2020-09), p. 1141-1157
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 55, No. 5-6 ( 2020-09), p. 1141-1157
    Abstract: Seasonal forecasts of variables like near-surface temperature or precipitation are becoming increasingly important for a wide range of stakeholders. Due to the many possibilities of recalibrating, combining, and verifying ensemble forecasts, there are ambiguities of which methods are most suitable. To address this we compare approaches how to process and verify multi-model seasonal forecasts based on a scientific assessment performed within the framework of the EU Copernicus Climate Change Service (C3S) Quality Assurance for Multi-model Seasonal Forecast Products (QA4Seas) contract C3S 51 lot 3. Our results underpin the importance of processing raw ensemble forecasts differently depending on the final forecast product needed. While ensemble forecasts benefit a lot from bias correction using climate conserving recalibration, this is not the case for the intrinsically bias adjusted multi-category probability forecasts. The same applies for multi-model combination. In this paper, we apply simple, but effective, approaches for multi-model combination of both forecast formats. Further, based on existing literature we recommend to use proper scoring rules like a sample version of the continuous ranked probability score and the ranked probability score for the verification of ensemble forecasts and multi-category probability forecasts, respectively. For a detailed global visualization of calibration as well as bias and dispersion errors, using the Chi-square decomposition of rank histograms proved to be appropriate for the analysis performed within QA4Seas.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Climate Dynamics Vol. 61, No. 5-6 ( 2023-09), p. 2673-2692
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 61, No. 5-6 ( 2023-09), p. 2673-2692
    Abstract: A number of recent studies have highlighted the differences in the northern extratropical response to the El Niño-Southern Oscillation (ENSO) during the early and late part of the boreal cold season, particularly over the North Atlantic/European (NAE) region. Diagnostic analyses of multi-decadal GCM simulations performed as a part of CMIP5 and CMIP6 projects have shown that early winter tropical teleconnections are usually simulated with lower fidelity than their late-winter equivalents. Although some results from individual seasonal forecasting systems have been published on this topic, it is still unclear to what extent the problems detected in multi-decadal simulations also affect initialised seasonal forecasts from state-of-the art models. In this study, we diagnose ENSO teleconnections from the re-forecast ensembles of nine models contributing (during winter 2021/22) to the multi-model seasonal forecasting system of the Copernicus Climate Change Service (C3S). The re-forecasts cover winters from 1993/94 to 2016/17, and are archived in the C3S Climate Data Store. Regression and composite patterns of 500-hPa height are computed separately for El Niño and La Niña winters, based on 2-month averages in November–December (ND) and January–February (JF). Model results are compared with the corresponding patterns derived from the ERA5 re-analysis. Signal-to-noise ratios are computed from time series of projections of individual winter anomalies onto the ENSO regression patterns. The results of this study indicate that initialised seasonal forecasts exhibit similar deficiencies to those already diagnosed in multi-decadal simulations, with a significant underestimation of the amplitude of early-winter teleconnections between ENSO and the NAE circulation, and of the signal-to-noise ratio in the early-winter response to El Niño. Further diagnostics highlight the impact of mis-representing the constructive interference of teleconnections from the Indian and Pacific Oceans in the early-winter ENSO response over the North Atlantic.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    IWA Publishing ; 2010
    In:  Journal of Water and Climate Change Vol. 1, No. 1 ( 2010-03-01), p. 2-16
    In: Journal of Water and Climate Change, IWA Publishing, Vol. 1, No. 1 ( 2010-03-01), p. 2-16
    Abstract: Drinking-water supply and sanitation services are essential for human health, but their technologies and management systems are potentially vulnerable to climate change. An assessment was made of the resilience of water supply and sanitation systems against forecast climate changes by 2020 and 2030. The results showed very few technologies are resilient to climate change and the sustainability of the current progress towards the Millennium Development Goals (MDGs) may be significantly undermined. Management approaches are more important than technology in building resilience for water supply, but the reverse is true for sanitation. Whilst climate change represents a significant threat to sustainable drinking-water and sanitation services, through no-regrets actions and using opportunities to increase service quality, climate change may be a driver for improvements that have been insufficiently delivered to date.
    Type of Medium: Online Resource
    ISSN: 2040-2244 , 2408-9354
    Language: English
    Publisher: IWA Publishing
    Publication Date: 2010
    detail.hit.zdb_id: 2552186-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2011
    In:  Food Policy Vol. 36 ( 2011-1), p. S88-S93
    In: Food Policy, Elsevier BV, Vol. 36 ( 2011-1), p. S88-S93
    Type of Medium: Online Resource
    ISSN: 0306-9192
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 1500470-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 12 ( 2022-12), p. E2804-E2826
    Abstract: The collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of regional climate model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas. Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to ­assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and ­activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS).
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 12 ( 2022-12), p. E2669-E2687
    Abstract: The Copernicus Climate Change Service (C3S) provides open and free access to state-of-the-art climate data and tools for use by governments, public authorities, and private entities around the world. It is fully funded by the European Union and implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) together with public and private entities in Europe and elsewhere. With over 120,000 registered users worldwide, C3S has rapidly become an authoritative climate service in Europe and beyond, delivering quality-assured climate data and information based on the latest science. Established in 2014, C3S became fully operational in 2018 with the launch of its Climate Data Store, a powerful cloud-based infrastructure providing access to a vast range of global and regional information, including climate data records derived from observations, the latest ECMWF reanalyses, seasonal forecast data from multiple providers, and a large collection of climate projections. The system has been designed to be accessible to nonspecialists, offering a uniform interface to all data and documentation as well as a Python-based toolbox that can be used to process and use the data online. C3S publishes European State of the Climate reports annually for policy-makers, as well as monthly and annual summaries that are widely disseminated in the international press. Together with users, C3S develops customized indicators of climate impacts in economic sectors such as energy, water management, agriculture, insurance, health, and urban planning. C3S works closely with national climate service providers, satellite agencies, and other stakeholders on the improvement of its data and services.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 1 ( 2023-01), p. E325-E339
    Abstract: The World Climate Research Programme (WCRP) envisions a world “that uses sound, relevant, and timely climate science to ensure a more resilient present and sustainable future for humankind.” This bold vision requires the climate science community to provide actionable scientific information that meets the evolving needs of societies all over the world. To realize its vision, WCRP has created five Lighthouse Activities to generate international commitment and support to tackle some of the most pressing challenges in climate science today. The overarching goal of the Lighthouse Activity on Explaining and Predicting Earth System Change is to develop an integrated capability to understand, attribute, and predict annual to decadal changes in the Earth system, including capabilities for early warning of potential high impact changes and events. This article provides an overview of both the scientific challenges that must be addressed, and the research and other activities required to achieve this goal. The work is organized in three thematic areas: (i) monitoring and modeling Earth system change; (ii) integrated attribution, prediction, and projection; and (iii) assessment of current and future hazards. Also discussed are the benefits that the new capability will deliver. These include improved capabilities for early warning of impactful changes in the Earth system, more reliable assessments of meteorological hazard risks, and quantitative attribution statements to support the Global Annual to Decadal Climate Update and State of the Climate reports issued by the World Meteorological Organization.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2016
    In:  Environmental Research Letters Vol. 11, No. 9 ( 2016-09-01), p. 094002-
    In: Environmental Research Letters, IOP Publishing, Vol. 11, No. 9 ( 2016-09-01), p. 094002-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2016
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...