GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 5 ( 2006-03-01), p. 643-674
    Abstract: The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic. Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2013
    In:  Journal of Climate Vol. 26, No. 10 ( 2013-05-15), p. 3209-3230
    In: Journal of Climate, American Meteorological Society, Vol. 26, No. 10 ( 2013-05-15), p. 3209-3230
    Abstract: Climate model simulations of daily precipitation statistics from the third phase of the Coupled Model Intercomparison Project (CMIP3) were evaluated against precipitation observations from North America over the period 1979–99. The evaluation revealed that the models underestimate the intensity of heavy and extreme precipitation along the Pacific coast, southeastern United States, and southern Mexico, and these biases are robust among the models. The models also overestimate the intensity of light precipitation events over much of North America, resulting in fairly realistic mean precipitation in many places. In contrast, heavy precipitation is simulated realistically over northern and eastern Canada, as is the seasonal cycle of heavy precipitation over a majority of North America. An evaluation of the simulated atmospheric dynamics and thermodynamics associated with extreme precipitation events was also conducted using the North American Regional Reanalysis (NARR). The models were found to capture the large-scale physical mechanisms that generate extreme precipitation realistically, although they tend to overestimate the strength of the associated atmospheric circulation features. This suggests that climate model deficiencies such as insufficient spatial resolution, inadequate representation of convective precipitation, and overly smoothed topography may be more important for biases in simulated heavy precipitation than errors in the large-scale circulation during extreme events.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2013
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Climate Vol. 29, No. 17 ( 2016-09-01), p. 6295-6318
    In: Journal of Climate, American Meteorological Society, Vol. 29, No. 17 ( 2016-09-01), p. 6295-6318
    Abstract: Using simulations performed with 24 coupled atmosphere–ocean global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), projections of Northern Hemisphere daily snowfall events under the RCP8.5 emissions scenario are analyzed for the periods of 2021–50 and 2071–2100 and compared to the historical period of 1971–2000. The overall frequency of daily snowfall events is simulated to decrease across much of the Northern Hemisphere, except at the highest latitudes such as northern Canada, northern Siberia, and Greenland. Seasonal redistributions of daily snowfall event frequency and average daily snowfall are also projected to occur in some regions. For example, large portions of the Northern Hemisphere, including much of Canada, Tibet, northern Scandinavia, northern Siberia, and Greenland, are projected to experience increases in average daily snowfall and event frequency in midwinter. But in warmer months, the regions with increased snowfall become fewer in number and are limited to northern Canada, northern Siberia, and Greenland. These simulations also show changes in the frequency distribution of daily snowfall event intensity, including an increase in heavier snowfall events even in some regions where the overall snowfall decreases. The projected changes in daily snowfall event frequency exhibit some dependence on the temperature biases of the individual models in certain regions and times of the year, with colder models typically toward the positive end of the distribution of event frequency changes and warmer models toward the negative end, particularly in regions near the transition zone between increasing and decreasing snowfall.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Paleoceanography and Paleoclimatology, American Geophysical Union (AGU), Vol. 33, No. 7 ( 2018-07), p. 840-859
    Abstract: Independent of the shoaling stage, the Central American Seaway altered the ocean mean state and deep water properties globally The seaway provided a shortcut for Pacific water, transporting heat and salt to the South Atlantic The seaway suppressed Antarctic Bottom Water northward extent, allowing North Atlantic Deep Water to deepen and slightly strengthen
    Type of Medium: Online Resource
    ISSN: 2572-4517 , 2572-4525
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2018
    detail.hit.zdb_id: 2916554-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2003
    In:  Science Vol. 302, No. 5648 ( 2003-11-14), p. 1200-1203
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 302, No. 5648 ( 2003-11-14), p. 1200-1203
    Abstract: Several indices of large-scale patterns of surface temperature variation were used to investigate climate change in North America over the 20th century. The observed variability of these indices was simulated well by a number of climate models. Comparison of index trends in observations and model simulations shows that North American temperature changes from 1950 to 1999 were unlikely to be due to natural climate variation alone. Observed trends over this period are consistent with simulations that include anthropogenic forcing from increasing atmospheric greenhouse gases and sulfate aerosols. However, most of the observed warming from 1900 to 1949 was likely due to natural climate variation.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2003
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2005
    In:  Climate Dynamics Vol. 24, No. 4 ( 2005-3), p. 325-346
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 24, No. 4 ( 2005-3), p. 325-346
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2005
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Applied Meteorology and Climatology Vol. 57, No. 1 ( 2018-01), p. 171-184
    In: Journal of Applied Meteorology and Climatology, American Meteorological Society, Vol. 57, No. 1 ( 2018-01), p. 171-184
    Abstract: Extratropical cyclones (ETCs) are responsible for most of the large storm-surge events in the northeastern United States. This study uses the ECMWF atmospheric reanalysis of the twentieth century (ERA-20C) and NOAA tide gauge data to examine the local, regional, and large-scale atmospheric circulation accompanying the 100 largest ETC-driven surge events at three locations along the northeastern coast of the United States: Sewells Point (Norfolk), Virginia; the Battery (New York City), New York; and Boston, Massachusetts. Results from a k -means cluster analysis indicate that the largest surges are generated when slowly propagating ETCs encounter a strong anticyclone, which produces a tighter pressure gradient and longer duration of onshore winds. The strength of the anticyclone is evident in the middle and upper troposphere where there are positive 500-hPa geopotential height anomalies overlying the surface anticyclone for the majority of clusters and nearly all of the five biggest surge events. Multiple clusters feature a slower-than-average storm and a strong anticyclone, indicating that various circulation scenarios can produce a large storm surge. This favorable environment for large surge events is influenced by well-known modes of climate variability including El Niño, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American (PNA) pattern. ETCs are more likely to produce a large surge during El Niño conditions, which have been shown to enhance the East Coast storm track. At Boston and the Battery, maximum surge occurs preferentially during the positive phase of PNA and the negative phases of AO/NAO.
    Type of Medium: Online Resource
    ISSN: 1558-8424 , 1558-8432
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2227779-1
    detail.hit.zdb_id: 2227759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Nature Communications Vol. 9, No. 1 ( 2018-04-10)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2018-04-10)
    Abstract: Much of the global annual mean temperature change over Quaternary glacial cycles can be attributed to slow ice sheet and greenhouse gas feedbacks, but analysis of the short-term response to orbital forcings has the potential to reveal key relationships in the climate system. In particular, obliquity and precession both produce highly seasonal temperature responses at high latitudes. Here, idealized single-forcing model experiments are used to quantify Earth’s response to obliquity, precession, CO 2 , and ice sheets, and a linear reconstruction methodology is used to compare these responses to long proxy records around the globe. This comparison reveals mismatches between the annual mean response to obliquity and precession in models versus the signals within Antarctic ice cores. Weighting the model-based reconstruction toward austral winter or spring reduces these discrepancies, providing evidence for a seasonal bias in ice cores.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Climate Vol. 17, No. 19 ( 2004-10), p. 3661-3665
    In: Journal of Climate, American Meteorological Society, Vol. 17, No. 19 ( 2004-10), p. 3661-3665
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Geophysical Research Letters Vol. 28, No. 8 ( 2001-04-15), p. 1571-1574
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 28, No. 8 ( 2001-04-15), p. 1571-1574
    Abstract: A coupled ocean‐atmosphere general circulation model is used to simulate the climates of today and the last glacial maximum (LGM). The model, which does not require artificial flux adjustments, produces a pattern of cooling at the LGM that is broadly consistent with the findings from simpler models and palaeoclimatic data. However, changes to the ocean circulation produce anomalously warm LGM surface conditions over parts of the North Atlantic, seemingly at odds with palaeoceanographic data. The thermohaline circulation is intensified for several centuries, as is the northward heat transport in the Atlantic equatorward of 55°N, but this may be a transient result. Mechanisms that lead to this response are discussed.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...