GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 9 ( 2018-5-29)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Antioxidants, MDPI AG, Vol. 9, No. 6 ( 2020-06-05), p. 492-
    Abstract: Cadmium (Cd), a category I human carcinogen, is a well-known widespread environmental pollutant. Chronic Cd exposure affects different organs and tissues, such as the central nervous system (CNS), and its deleterious effects can be linked to indirect reactive oxygen species (ROS) generation. Since Cd is predominantly present in +2 oxidation state, it can interplay with a plethora of channels and transporters in the cell membrane surface in order to enter the cells. Mitochondrial dysfunction, ROS production, glutathione depletion and lipid peroxidation are reviewed in order to better characterize the Cd-elicited molecular pathways. Furthermore, Cd effects on different CNS cell types have been highlighted to better elucidate its role in neurodegenerative disorders. Indeed, Cd can increase blood–brain barrier (BBB) permeability and promotes Cd entry that, in turn, stimulates pericytes in maintaining the BBB open. Once inside the CNS, Cd acts on glial cells (astrocytes, microglia, oligodendrocytes) triggering a pro-inflammatory cascade that accounts for the Cd deleterious effects and neurons inducing the destruction of synaptic branches.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiome, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2020-12)
    Abstract: The gut-brain axis and the intestinal microbiota are emerging as key players in health and disease. Shifts in intestinal microbiota composition affect a variety of systems; however, evidence of their direct impact on cognitive functions is still lacking. We tested whether faecal microbiota transplant (FMT) from aged donor mice into young adult recipients altered the hippocampus, an area of the central nervous system (CNS) known to be affected by the ageing process and related functions. Results Young adult mice were transplanted with the microbiota from either aged or age-matched donor mice. Following transplantation, characterization of the microbiotas and metabolomics profiles along with a battery of cognitive and behavioural tests were performed. Label-free quantitative proteomics was employed to monitor protein expression in the hippocampus of the recipients. We report that FMT from aged donors led to impaired spatial learning and memory in young adult recipients, whereas anxiety, explorative behaviour and locomotor activity remained unaffected. This was paralleled by altered expression of proteins involved in synaptic plasticity and neurotransmission in the hippocampus. Also, a strong reduction of bacteria associated with short-chain fatty acids (SCFAs) production ( Lachnospiraceae, Faecalibaculum , and Ruminococcaceae ) and disorders of the CNS ( Prevotellaceae and Ruminococcaceae ) was observed. Finally, the detrimental effect of FMT from aged donors on the CNS was confirmed by the observation that microglia cells of the hippocampus fimbria, acquired an ageing-like phenotype; on the contrary, gut permeability and levels of systemic and local (hippocampus) cytokines were not affected. Conclusion These results demonstrate that age-associated shifts of the microbiota have an impact on protein expression and key functions of the CNS. Furthermore, these results highlight the paramount importance of the gut-brain axis in ageing and provide a strong rationale to devise therapies aiming to restore a young-like microbiota to improve cognitive functions and the declining quality of life in the elderly.
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Medicina, MDPI AG, Vol. 58, No. 1 ( 2022-01-17), p. 137-
    Abstract: Background: The “classic” thyroid gland arterial vascularization takes into account two superior thyroid arteries (STA), two inferior thyroid arteries (ITA) and, occasionally, a thyroid ima artery (TIMA). The present review focuses on exploring the available data concerning thyroid gland arterial vascularization and its variations. Methods: Here, we analysed 49 articles from the last century, ranging from case reports to reviews concerning cadaver dissection classes, surgical intervention, and non-invasive techniques as well. Results: The harvested data clearly highlighted that: (i) the STA originates predominantly from the external carotid artery; (ii) the ITA is a branch of the thyrocervical trunk; and (iii) the TIMA is a very uncommon variant predominantly occurring to compensate for ITA absence. Conclusion: A systematic review of a highly vascularized organ is of great relevance during surgical intervention and, thus, the knowledge of normal anatomy and its modification is essential both for fact-finding and in surgery.
    Type of Medium: Online Resource
    ISSN: 1648-9144
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2088820-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Medicina, MDPI AG, Vol. 58, No. 10 ( 2022-09-23), p. 1341-
    Abstract: Background and Objectives: Aging is a biological and irreversible process characterized by physiological alterations resulting in a progressive decline in biological functions, decreased resistance or adaptability to stress, and increased disease susceptibility. A decline in functional fitness, imbalance between pro- and antioxidant capacity, and/or hormonal dysregulation adversely impact physical capacity, emotional status, and overall quality of life, especially within the elderly population. On the other hand, regular physical activity is considered an effective strategy to prevent and reduce those changes associated with primary aging and concurrent chronic disease, while slowing age-related physical degeneration. However, there is still limited evidence-based information regarding both the intensity and interval of effective interventions on physical functioning in older adults. Thus, the aim of the study was to assess the effects of a 24-week regular multimodal exercise program on functional fitness, oxidative stress, salivary cortisol level, and self-perceived quality of life in a group of eighteen physically active elderly subjects (mean age 72.8 ± 7.5 years). Materials and Methods: A set of anthropometric and physical measurements (grip strength, chair sit to stand, sit and reach and back scratch) assessing the functional fitness performance were evaluated. Moreover, biochemical markers (derived-reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP) tests, and salivary cortisol levels) and the EuroQoL 5-Dimension 3-Level (EuroQoL 5-D 3-L) self-perceived questionnaire of quality of life were measured before and after the intervention program. All measurements were normally distributed as assessed by D’Agostino and Pearson’s omnibus normality test. Student’s t-tests were used to evaluate the differences in all the parameters measured at baseline (T0) and after the 24-week physical program (T1). Results: The results showed that an age-tailored structured intervention exercise program (1 h per session, twice per week, for 24 weeks) was effective in improving flexibility and other biomechanical parameters, such as muscle strength and the dynamic balance fitness component, which are key to performing daily tasks independently. Moreover, biochemical analyses demonstrate that the proposed intervention program has beneficial effects on the balance between plasma ROS production and their neutralization. Conclusions: The results confirm the benefits of regular physical activity in older adults resulting in improved physical strength and flexibility in the functional fitness parameters, and in regulating anti- and pro-oxidant activity and cortisol (stress hormone) levels.
    Type of Medium: Online Resource
    ISSN: 1648-9144
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2088820-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cells, MDPI AG, Vol. 11, No. 10 ( 2022-05-15), p. 1646-
    Abstract: Cadmium (Cd) is a well-known occupational and environmental pollutant worldwide, and its toxicity is widely recognised. Cd is reported to increase the permeability of the blood–brain barrier (BBB) and to penetrate and accumulate in the brain. Although many lines of evidence show that Cd toxicity is induced by different mechanisms, one of the best known is the Cd-dependent production of reactive oxygen species (ROS). Zinc is a trace element known as coenzyme and cofactor for many antioxidant proteins, such as metallothioneins and superoxide dismutase enzymes. To date, very little is known about the role of Zn in preventing Cd-induced blood–brain barrier (BBB) alterations. The goal of this study was to test the Zn antioxidant capacity against Cd-dependent alterations in a rat brain endothelial cell line (RBE4), as an in vitro model for BBB. In order to mimic acute Cd poisoning, RBE4 cells were treated with CdCl2 30 µM for 24 h. The protective role of ZnCl2 (50 µM) was revealed by evaluating the cell viability, reactive oxygen species (ROS) quantification, cytochrome C distribution, and the superoxide dismutase (SOD) protein activity. Additionally, the effectiveness of Zn in counteracting the Cd-induced damage was investigated by evaluating the expression levels of proteins already known to be involved in the Cd signalling pathway, such as GRP78 (an endoplasmic reticulum (ER) stress protein), caspase3 pro- and cleaved forms, and BAX. Finally, we evaluated if Zn was able to attenuate the alterations of zonula occludens-1 (ZO-1), one of the tight-junction (TJ) proteins involved in the formation of the BBB. Our data clearly demonstrate that Zn, by protecting from the SOD activity impairment induced by Cd, is able to prevent the triggering of the Cd-dependent signalling pathway that leads to ZO-1 dislocation and downregulation, and BBB damage.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cells, MDPI AG, Vol. 9, No. 8 ( 2020-07-24), p. 1772-
    Abstract: The management of visceral pain is a major clinical problem in patients affected by gastrointestinal disorders. The poor knowledge about pain chronicization mechanisms prompted us to study the functional and morphological alterations of the gut and nervous system in the animal model of persistent visceral pain caused by 2,4-dinitrobenzenesulfonic acid (DNBS). This agent, injected intrarectally, induced a colonic inflammation peaking on day 3 and remitting progressively from day 7. In concomitance with bowel inflammation, the animals developed visceral hypersensitivity, which persisted after colitis remission for up to three months. On day 14, the administration of pain-relieving drugs (injected intraperitoneally and intrathecally) revealed a mixed nociceptive, inflammatory and neuropathic pain originating from both the peripheral and central nervous system. At this time point, the colonic histological analysis highlighted a partial restitution of the tunica mucosa, transmural collagen deposition, infiltration of mast cells and eosinophils, and upregulation of substance P (SP)-positive nerve fibers, which were surrounded by eosinophils and MHC-II-positive macrophages. A significant activation of microglia and astrocytes was observed in the dorsal and ventral horns of spinal cord. These results suggest that the persistence of visceral pain induced by colitis results from maladaptive plasticity of the enteric, peripheral and central nervous systems.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...