GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Database Vol. 2015 ( 2015-01-01)
    In: Database, Oxford University Press (OUP), Vol. 2015 ( 2015-01-01)
    Type of Medium: Online Resource
    ISSN: 1758-0463
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2496706-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genome Research, Cold Spring Harbor Laboratory, Vol. 22, No. 9 ( 2012-09), p. 1760-1774
    Abstract: The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
    Type of Medium: Online Resource
    ISSN: 1088-9051
    RVK:
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2012
    detail.hit.zdb_id: 1483456-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Food Processing: Techniques and Technology, Kemerovo State University
    Abstract: Cyanobacterium sp. IPPAS B-1200 is a cyanobacteria strain that belongs to the rare genus Cyanobacterium, family Cyanobacteriaceae fam. nov. Studies devoted to the isolation of secondary metabolites from this strain concentrate mostly on the fatty acid composition while the issue of isolating and identifying exopolysaccharides remains understudied. However, polysaccharides from cyanobacteria are of scientific and economic interest in the framework of biotechnology, medicine, pharmacology, etc. The research objective was to study the effect of the physicochemical conditions of cultivation and the composition of the cultural medium on exopolysaccharide production. Cyanobacterium sp. B-1200 were grown under 7500 ± 50 lux (12 h light/12 h dark). The dry cell weight was determined by gravimetry and a calibration plot that illustrated the dependence of the biomass amount on the degree of absorption at a wavelength of 750 nm. The amount of polysaccharides in the culture liquid was assessed by the Anthrone-sulphate method. The extraction was carried out by alcohol precipitation. The method of ultrasonic dispersion was used to destroy the cell walls of cyanobacteria. The experimental study revealed the optimal parameters for the extraction and purification of exopolysaccharides from the culture medium. Removal of sodium bicarbonate from the medium and a 300%-increase in its concentration raised the yield of polysaccharides. The optimal value of active acidity for the synthesis of polysaccharides was pH = 6 while the optimal temperature for their accumulation was 35°C. The largest amount of biomass was obtained at 25°C. Intense white illumination contributed to the greatest release of exopolysaccharides into the culture medium; red-white illumination affected the morphology of cyanobacteria cells. During the extraction, the concentration, temperature, and nature of the extractant proved to be the most important factors. For example, isopropanol produced the highest yield while butanol triggered the least effective response. The optimal extraction and purification modes for polysaccharides were as follows. For ultrasonic processing, the best results were obtained at a power of 20 W after 5 min. For freeze drying, the rational parameters were 8 h at –15°C.
    Type of Medium: Online Resource
    ISSN: 2074-9414 , 2313-1748
    Uniform Title: Оптимизация получения полисахаридов из Cyanobacterium sp. IPPAS B-1200
    Language: English , Russian
    Publisher: Kemerovo State University
    Publication Date: 2023
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2006
    In:  Developmental Biology Vol. 296, No. 1 ( 2006-08), p. 137-149
    In: Developmental Biology, Elsevier BV, Vol. 296, No. 1 ( 2006-08), p. 137-149
    Type of Medium: Online Resource
    ISSN: 0012-1606
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 1463203-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...