GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: BMC Genomics, Springer Science and Business Media LLC, Vol. 22, No. 1 ( 2021-12)
    Abstract: Pediatric cancers typically have a distinct genomic landscape when compared to adult cancers and frequently carry somatic gene fusion events that alter gene expression and drive tumorigenesis. Sensitive and specific detection of gene fusions through the analysis of next-generation-based RNA sequencing (RNA-Seq) data is computationally challenging and may be confounded by low tumor cellularity or underlying genomic complexity. Furthermore, numerous computational tools are available to identify fusions from supporting RNA-Seq reads, yet each algorithm demonstrates unique variability in sensitivity and precision, and no clearly superior approach currently exists. To overcome these challenges, we have developed an ensemble fusion calling approach to increase the accuracy of identifying fusions. Results Our En semble Fusion (EnFusion) approach utilizes seven fusion calling algorithms: Arriba, CICERO, FusionMap, FusionCatcher, JAFFA, MapSplice, and STAR-Fusion, which are packaged as a fully automated pipeline using Docker and Amazon Web Services (AWS) serverless technology. This method uses paired end RNA-Seq sequence reads as input, and the output from each algorithm is examined to identify fusions detected by a consensus of at least three algorithms. These consensus fusion results are filtered by comparison to an internal database to remove likely artifactual fusions occurring at high frequencies in our internal cohort, while a “known fusion list” prevents failure to report known pathogenic events. We have employed the EnFusion pipeline on RNA-Seq data from 229 patients with pediatric cancer or blood disorders studied under an IRB-approved protocol. The samples consist of 138 central nervous system tumors, 73 solid tumors, and 18 hematologic malignancies or disorders. The combination of an ensemble fusion-calling pipeline and a knowledge-based filtering strategy identified 67 clinically relevant fusions among our cohort (diagnostic yield of 29.3%), including RBPMS-MET, BCAN-NTRK1, and TRIM22-BRAF fusions. Following clinical confirmation and reporting in the patient’s medical record, both known and novel fusions provided medically meaningful information. Conclusions The EnFusion pipeline offers a streamlined approach to discover fusions in cancer, at higher levels of sensitivity and accuracy than single algorithm methods. Furthermore, this method accurately identifies driver fusions in pediatric cancer, providing clinical impact by contributing evidence to diagnosis and, when appropriate, indicating targeted therapies.
    Type of Medium: Online Resource
    ISSN: 1471-2164
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2041499-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-7-13)
    Abstract: Rhabdoid tumors (RTs) of the brain (atypical teratoid/rhabdoid tumor; AT/RT) and extracranial sites (most often the kidney; RTK) are malignant tumors predominantly occurring in children, frequently those with SMARCB1 germline alterations. Here we present data from seven RTs from three pediatric patients who all had multi-organ involvement. The tumors were analyzed using a multimodal molecular approach, which included exome sequencing of tumor and germline comparator and RNA sequencing and DNA array-based methylation profiling of tumors. SMARCB1 germline alterations were identified in all patients and in all tumors. We observed a second hit in SMARCB1 via chr22 loss of heterozygosity. By methylation profiling, all tumors were classified as rhabdoid tumors with a corresponding subclassification within the MYC, TYR, or SHH AT/RT subgroups. Using RNA-seq gene expression clustering, we recapitulated the classification of known AT/RT subgroups. Synchronous brain and kidney tumors from the same patient showed different patterns of either copy number variants, single-nucleotide variants, and/or genome-wide DNA methylation, suggestive of non-clonal origin. Furthermore, we demonstrated that a lung and abdominal metastasis from two patients shared overlapping molecular features with the patient’s primary kidney tumor, indicating the likely origin of the metastasis. In addition to the SMARCB1 events, we identified other whole-chromosome events and single-nucleotide variants in tumors, but none were found to be prognostic, diagnostic, or offer therapeutic potential for rhabdoid tumors. While our findings are of biological interest, there may also be clinical value in comprehensive molecular profiling in patients with multiple rhabdoid tumors, particularly given the potential prognostic and therapeutic implications for different rhabdoid tumor subgroups demonstrated in recent clinical trials and other large cohort studies.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Neuropathologica Communications, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2021-12)
    Abstract: Retinoblastoma is a childhood cancer of the retina involving germline or somatic alterations of the RB Transcriptional Corepressor 1 gene, RB1 . Rare cases of sellar-suprasellar region retinoblastoma without evidence of ocular or pineal tumors have been described. A nine-month-old male presented with a sellar-suprasellar region mass. Histopathology showed an embryonal tumor with focal Flexner-Wintersteiner-like rosettes and loss of retinoblastoma protein (RB1) expression by immunohistochemistry. DNA array-based methylation profiling confidently classified the tumor as pineoblastoma group A/intracranial retinoblastoma. The patient was subsequently enrolled on an institutional translational cancer research protocol and underwent comprehensive molecular profiling, including paired tumor/normal exome and genome sequencing and RNA-sequencing of the tumor. Additionally, Pacific Biosciences (PacBio) Single Molecule Real Time (SMRT) sequencing was performed from comparator normal and disease-involved tissue to resolve complex structural variations. RNA-sequencing revealed multiple fusions clustered within 13q14.1-q21.3, including a novel in-frame fusion of RB1-SIAH3 predicted to prematurely truncate the RB1 protein. SMRT sequencing revealed a complex structural rearrangement spanning 13q14.11-q31.3, including two somatic structural variants within intron 17 of RB1 . These events corresponded to the RB1-SIAH3 fusion and a novel RB1 rearrangement expected to correlate with the complete absence of RB1 protein expression. Comprehensive molecular analysis, including DNA array-based methylation profiling and sequencing-based methodologies, were critical for classification and understanding the complex mechanism of RB1 inactivation in this diagnostically challenging tumor.
    Type of Medium: Online Resource
    ISSN: 2051-5960
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2715589-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: American Journal of Surgical Pathology, Ovid Technologies (Wolters Kluwer Health), Vol. 45, No. 3 ( 2021-03), p. 329-340
    Abstract: Meningiomas are a central nervous system tumor primarily afflicting adults, with 〈 1% of cases diagnosed during childhood or adolescence. Somatic variation in NF2 may be found in ∼50% of meningiomas, with other genetic drivers (eg, SMO , AKT1 , TRAF7 ) contributing to NF2 wild-type tumors. NF2 is an upstream negative regulator of YAP signaling and loss of the NF2 protein product, Merlin, results in YAP overexpression and target gene transcription. This mechanism of dysregulation is described in NF2 -driven meningiomas, but further work is necessary to understand the NF2 -independent mechanism of tumorigenesis. Amid our institutional patient-centric comprehensive molecular profiling study, we identified an individual with meningioma harboring a YAP1-FAM118B fusion, previously reported only in supratentorial ependymoma. The tumor histopathology was remarkable, characterized by prominent islands of calcifying fibrous nodules within an overall collagen-rich matrix. To gain insight into this finding, we subsequently evaluated the genetic landscape of 11 additional pediatric and adolescent/young adulthood meningioma patients within the Children’s Brain Tumor Tissue Consortium. A second individual harboring a YAP1-FAM118B gene fusion was identified within this database. Transcriptomic profiling suggested that YAP1 -fusion meningiomas are biologically distinct from NF2 -driven meningiomas. Similar to other meningiomas, however, YAP1 -fusion meningiomas demonstrated overexpression of EGFR and MET . DNA methylation profiling further distinguished YAP1 -fusion meningiomas from those observed in ependymomas. In summary, we expand the genetic spectrum of somatic alteration associated with NF2 wild-type meningioma to include the YAP1-FAM118B fusion and provide support for aberrant signaling pathways potentially targetable by therapeutic intervention.
    Type of Medium: Online Resource
    ISSN: 0147-5185
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2029143-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 62, No. 1 ( 2023-01), p. 39-46
    Abstract: Ependymal tumors are the third most common brain tumor under 14 years old. Even though metastatic disease is a rare event, it affects mostly young children and carries an adverse prognosis. The factors associated with dissemination and the best treatment approach have not yet been established and there is limited published data on how to manage metastatic disease, especially in patients under 3 years of age. We provide a review of the literature on clinical characteristics and radiation‐sparing treatments for metastatic ependymoma in children under 3 years of age treated. The majority (73%) of the identified cases were above 12 months old and had the PF as the primary site at diagnosis. Chemotherapy‐based approaches, in different regimens, were used with radiation reserved for progression or relapse. The prognosis varied among the studies, with an average of 50%–58% overall survival. This study also describes the case of a 7‐month‐old boy with metastatic posterior fossa (PF) ependymoma, for whom we identified a novel SPECC1L‐RAF1 gene fusion using a patient‐centric comprehensive molecular profiling protocol. The patient was successfully treated with intensive induction chemotherapy followed by high‐dose chemotherapy and autologous hematopoietic progenitor cell rescue (AuHSCR). Currently, the patient is in continuous remission 5 years after his diagnosis, without radiation therapy. The understanding of the available therapeutic approaches may assist physicians in their management of such patients. This report also opens the perspective of newly identified molecular alterations in metastatic ependymomas that might drive more chemo‐sensitive tumors.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 484-484
    Abstract: Medulloblastoma is a pediatric embryonal tumor that can be classified into four molecular subgroups, each derived from a different progenitor cell. It is estimated that about 30-40% of patients will relapse, typically with recurrence at the primary site and of the same molecular subgroup. We present paired tumor/normal genomic analysis of an 18 year-old male who presented with non-Wnt/non-SHH medulloblastoma at age 12 and relapsed with metastatic disease of the falx cerebri 3 years later. Combination surgery, chemotherapy, and radiation were used in treatment of the primary and recurrent tumor. At a timepoint 6 years from original diagnosis, the patient presented with a cerebellar tumor histologically described as “consistent with recurrent medulloblastoma” with comment recommending genomics to confirm. The diagnosis was made based on near identifical morphology and retention of Neu-N and Synaptophysin in the tumor (confirmed by subsequent genetic analysis). The primary tumor and the tumor occurring 6 years after the primary diagnosis were analyzed by whole exome sequencing (blood and tumor tissues) to assess for germline variants, somatic mutation, and copy number variation. We observed no pathogenic germline variants in cancer predisposition genes. The tumor mutational profiles were distinct, with only 6 (1.8%) shared somatic variants between tumors. Specimen provenance was verified by germline variation and SRY coverage. Two targetable mutations within the RAS-MAPK pathway (PTPN11 p.Glu76Lys and PIK3CA p.Gly1007Arg) were present only in the new CNS tumor. Although the primary tumor harbored isochromosome 17q and a gain of chromosome 4, these somatic chromosomal aberrations were not detected in the new CNS tumor. RNA-seq was performed on both tumors and compared to pediatric CNS tumors from the University of California Santa Cruz Treehouse Initiative (n=434). The primary tumor clustered with the medulloblastoma patients by principal component analysis while the new CNS tumor clustered with a group of gliomas and non-medulloblastoma embryonal tumors. The primary tumor displayed evidence of overexpression of Group 4 medulloblastoma genes (e.g. EOMES, RBM24, SNCAIP, and UNC5D). These genes were not overexpressed in the new CNS tumor. Enrichment of genes commonly found in gliomas (e.g. BCAN, CHI3L2, PDGFRA, and SOX2) were noted in the new CNS tumor only. In summary, tumor genomic profiling of a primary medulloblastoma and the new CNS tumor arising 6 years later revealed two distinct sets of somatic mutations suggestive of second malignancy rather than recurrence in this patient. While second malignancy in the setting of medulloblastoma is a rare event, it has been documented, both in a time period consistent with that described in our patient and in the form of glioma. Thus, tumor profiling refined diagnosis in this patient allowing for a more accurate assessment of treatment and management options. Citation Format: Kathleen M. Schieffer, Katherine E. Miller, Daniel R. Boue, Daniel C. Koboldt, Patrick Brennan, Benjamin J. Kelly, Gregory Wheeler, Vincent Magrini, Amy Wetzel, Elizabeth Varga, Devon Dishman, Kristen Leraas, Vibhuti Agarwal, Mohamed S. AbdelBaki, Jonathan L. Finlay, Jeffrey R. Leonard, Peter White, Julie M. Gastier-Foster, Catherine E. Cottrell, Elaine R. Mardis, Richard K. Wilson. Molecular profiling identifies a second malignancy in a patient with medulloblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 484.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Epilepsia, Wiley, Vol. 63, No. 8 ( 2022-08), p. 1981-1997
    Abstract: Epilepsy‐associated developmental lesions, including malformations of cortical development and low‐grade developmental tumors, represent a major cause of drug‐resistant seizures requiring surgical intervention in children. Brain‐restricted somatic mosaicism has been implicated in the genetic etiology of these lesions; however, many contributory genes remain unidentified. Methods We enrolled 50 children who were undergoing epilepsy surgery into a translational research study. Resected tissue was divided for clinical neuropathologic evaluation and genomic analysis. We performed exome and RNA sequencing to identify somatic variation and we confirmed our findings using high‐depth targeted DNA sequencing. Results We uncovered candidate disease‐causing somatic variation affecting 28 patients (56%), as well as candidate germline variants affecting 4 patients (8%). In agreement with previous studies, we identified somatic variation affecting solute carrier family 35 member A2 ( SLC35A2 ) and mechanistic target of rapamycin kinase ( MTOR ) pathway genes in patients with focal cortical dysplasia. Somatic gains of chromosome 1q were detected in 30% (3 of 10) of patients with Type I focal cortical dysplasia (FCD)s. Somatic variation in mitogen‐activated protein kinase ( MAPK) pathway genes (i.e., fibroblast growth factor receptor 1 [ FGFR1 ], FGFR2 , B‐raf proto‐oncogene, serine/threonine kinase [ BRAF ], and KRAS proto‐oncogene, GTPase [ KRAS ]) was associated with low‐grade epilepsy‐associated developmental tumors. RNA sequencing enabled the detection of somatic structural variation that would have otherwise been missed, and which ac counted for more than one‐half of epilepsy‐associated tumor diagnoses. Sampling across multiple anatomic regions revealed that somatic variant allele fractions vary widely within epileptogenic tissue. Finally, we identified putative disease‐causing variants in genes not yet associated with focal cortical dysplasia. Significance These results further elucidate the genetic basis of structural brain abnormalities leading to focal epilepsy in children and point to new candidate disease genes.
    Type of Medium: Online Resource
    ISSN: 0013-9580 , 1528-1167
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2002194-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Neuropathologica Communications, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2022-11-21)
    Abstract: Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used single-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory markers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.
    Type of Medium: Online Resource
    ISSN: 2051-5960
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2715589-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Case Studies, Cold Spring Harbor Laboratory, Vol. 4, No. 2 ( 2018-04), p. a002618-
    Abstract: Gangliogliomas (WHO grade I) are rare tumors affecting the central nervous system and are most frequently observed in children. Next-generation sequencing of tumors is being utilized at an increasing rate in both research and clinical settings to characterize the genetic factors that drive tumorigenesis. Here, we report a rare BRAF somatic mutation (NM_004333.4:c.1794_1796dupTAC; p.Thr599dup) in the tumor genome from a pediatric patient in her late teens, who was initially diagnosed with low-grade ganglioglioma at age 13. This duplication of 3 nt introduces a second threonine residue at amino acid 599 of the BRAF protein. Based on previous studies, this variant is likely to increase kinase activity, similar to the well-characterized BRAF p.Val600Glu (V600E) pathogenic variant. In addition, although the p.T599dup somatic mutation has been documented rarely in human cancers, the variant has not been previously reported in ganglioglioma. The identification of this variant presents an opportunity to consider targeted therapy (e.g., BRAF inhibitor) for this patient.
    Type of Medium: Online Resource
    ISSN: 2373-2865 , 2373-2873
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2018
    detail.hit.zdb_id: 2835759-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 18, No. suppl 3 ( 2016-06), p. iii102.3-iii102
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2016
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...