GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 10, No. 9 ( 2017-09-20), p. 3429-3452
    Abstract: Abstract. Fugitive emissions from waste disposal sites are important anthropogenic sources of the greenhouse gas methane (CH4). As a result of the growing world population and the recognition of the need to control greenhouse gas emissions, this anthropogenic source of CH4 has received much recent attention. However, the accurate assessment of the CH4 emissions from landfills by modeling and existing measurement techniques is challenging. This is because of inaccurate knowledge of the model parameters and the extent of and limited accessibility to landfill sites. This results in a large uncertainty in our knowledge of the emissions of CH4 from landfills and waste management. In this study, we present results derived from data collected during the research campaign COMEX (CO2 and MEthane eXperiment) in late summer 2014 in the Los Angeles (LA) Basin. One objective of COMEX, which comprised aircraft observations of methane by the remote sensing Methane Airborne MAPper (MAMAP) instrument and a Picarro greenhouse gas in situ analyzer, was the quantitative investigation of CH4 emissions. Enhanced CH4 concentrations or CH4 plumes were detected downwind of landfills by remote sensing aircraft surveys. Subsequent to each remote sensing survey, the detected plume was sampled within the atmospheric boundary layer by in situ measurements of atmospheric parameters such as wind information and dry gas mixing ratios of CH4 and carbon dioxide (CO2) from the same aircraft. This was undertaken to facilitate the independent estimation of the surface fluxes for the validation of the remote sensing estimates. During the COMEX campaign, four landfills in the LA Basin were surveyed. One landfill repeatedly showed a clear emission plume. This landfill, the Olinda Alpha Landfill, was investigated on 4 days during the last week of August and first days of September 2014. Emissions were estimated for all days using a mass balance approach. The derived emissions vary between 11.6 and 17.8 kt CH4 yr−1 with related uncertainties in the range of 14 to 45 %. The comparison of the remote sensing and in situ based CH4 emission rate estimates reveals good agreement within the error bars with an average of the absolute differences of around 2.4 kt CH4 yr−1 (±2. 8 kt CH4 yr−1). The US Environmental Protection Agency (EPA) reported inventory value is 11.5 kt CH4 yr−1 for 2014, on average 2.8 kt CH4 yr−1 (±1. 6 kt CH4 yr−1) lower than our estimates acquired in the afternoon in late summer 2014. This difference may in part be explained by a possible leak located on the southwestern slope of the landfill, which we identified in the observations of the Airborne Visible/Infrared Imaging Spectrometer – Next Generation (AVIRIS-NG) instrument, flown contemporaneously aboard a second aircraft on 1 day.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 1999
    In:  The Lancet Vol. 354, No. 9195 ( 1999-12), p. 2081-
    In: The Lancet, Elsevier BV, Vol. 354, No. 9195 ( 1999-12), p. 2081-
    Type of Medium: Online Resource
    ISSN: 0140-6736
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1999
    detail.hit.zdb_id: 2067452-1
    detail.hit.zdb_id: 3306-6
    detail.hit.zdb_id: 1476593-7
    SSG: 5,21
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 1998
    In:  American Journal of Hematology Vol. 58, No. 3 ( 1998-07), p. 252-252
    In: American Journal of Hematology, Wiley, Vol. 58, No. 3 ( 1998-07), p. 252-252
    Type of Medium: Online Resource
    ISSN: 0361-8609 , 1096-8652
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 1998
    detail.hit.zdb_id: 1492749-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 11 ( 2022-06-09), p. 3401-3437
    Abstract: Abstract. We show new results from an updated version of the Fast atmOspheric traCe gAs retrievaL (FOCAL) retrieval method applied to measurements of the Greenhouse gases Observing SATellite (GOSAT) and its successor GOSAT-2. FOCAL was originally developed for estimating the total column carbon dioxide mixing ratio (XCO2) from spectral measurements made by the Orbiting Carbon Observatory-2 (OCO-2). However, depending on the available spectral windows, FOCAL also successfully retrieves total column amounts for other atmospheric species and their uncertainties within one single retrieval. The main focus of the current paper is on methane (XCH4; full-physics and proxy product), water vapour (XH2O) and the relative ratio of semi-heavy water (HDO) to water vapour (δD). Due to the extended spectral range of GOSAT-2, it is also possible to derive information on carbon monoxide (XCO) and nitrous oxide (XN2O) for which we also show first results. We also present an update on XCO2 from both instruments. For XCO2, the new FOCAL retrieval (v3.0) significantly increases the number of valid data compared with the previous FOCAL retrieval version (v1) by 50 % for GOSAT and about a factor of 2 for GOSAT-2 due to relaxed pre-screening and improved post-processing. All v3.0 FOCAL data products show reasonable spatial distribution and temporal variations. Comparisons with the Total Carbon Column Observing Network (TCCON) result in station-to-station biases which are generally in line with the reported TCCON uncertainties. With this updated version of the GOSAT-2 FOCAL data, we provide a first total column average XN2O product. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb, which can be explained by variations in tropopause height. The new GOSAT-2 XN2O product compares well with TCCON. Its station-to-station variability is lower than 2 ppb, which is about the magnitude of the typical N2O variations close to the surface. However, both GOSAT-2 and TCCON measurements show that the seasonal variations in the total column average XN2O are on the order of 8 ppb peak-to-peak, which can be easily resolved by the GOSAT-2 FOCAL data. Noting that only few XN2O measurements from satellites exist so far, the GOSAT-2 FOCAL product will be a valuable contribution in this context.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    SAGE Publications ; 2002
    In:  Annals of Pharmacotherapy Vol. 36, No. 2 ( 2002-02), p. 261-263
    In: Annals of Pharmacotherapy, SAGE Publications, Vol. 36, No. 2 ( 2002-02), p. 261-263
    Abstract: To report a case of acute cholestatic hepatitis following exposure to the inhalational anesthetic isoflurane. CASE SUMMARY: A 70-year-old healthy woman from Iraq developed acute cholestatic hepatitis 3 weeks following repair of the right rotator cuff under general anesthesia. There was no evidence for viral, autoimmune, or metabolic causes of hepatitis. No other medications were involved except for dipyrone for analgesia. The alanine aminotransferase was elevated to a peak concentration of 1533 U/L and the serum bilirubin reached a peak of 17.0 mg/dL. There was slow improvement over 4 months. Accidental reexposure by the patient to dipyrone was uneventful. DISCUSSION: The clinical and histologic picture of this case resembles halothane hepatitis, which has a significant mortality rate. CONCLUSIONS: Isoflurane, a common anesthetic agent, can cause severe cholestatic hepatitis.
    Type of Medium: Online Resource
    ISSN: 1060-0280 , 1542-6270
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2002
    detail.hit.zdb_id: 2053518-1
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    European Respiratory Society (ERS) ; 2021
    In:  European Respiratory Journal Vol. 57, No. 3 ( 2021-03), p. 2004645-
    In: European Respiratory Journal, European Respiratory Society (ERS), Vol. 57, No. 3 ( 2021-03), p. 2004645-
    Type of Medium: Online Resource
    ISSN: 0903-1936 , 1399-3003
    Language: English
    Publisher: European Respiratory Society (ERS)
    Publication Date: 2021
    detail.hit.zdb_id: 2834928-3
    detail.hit.zdb_id: 1499101-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 35 ( 2016-08-30), p. 9734-9739
    Abstract: Methane (CH 4 ) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH 4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼ 2 kg/h to 5 kg/h through ∼ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 1 ( 2021-01-11), p. 153-172
    Abstract: Abstract. A reduction of the anthropogenic emissions of CO2 (carbon dioxide) is necessary to stop or slow down man-made climate change. To verify mitigation strategies, a global monitoring system such as the envisaged European Copernicus anthropogenic CO2 monitoring mission (CO2M) is required. Those satellite data are going to be complemented and validated with airborne measurements. Unmanned aerial vehicle (UAV)-based measurements can provide a cost-effective way to contribute to these activities. Here, we present the development of an sUAS (small unmanned aircraft system) to quantify the CO2 emissions of a nearby point source from its downwind mass flux without the need for any ancillary data. Specifically, CO2 is measured by an NDIR (non-dispersive infrared) detector, and the wind speed and direction are measured with a 2-D ultrasonic acoustic resonance anemometer. By means of laboratory measurements and an in-flight validation at the ICOS (Integrated Carbon Observation System) atmospheric station Steinkimmen (STE) near Bremen, Germany, we estimate that the individual CO2 measurements have a precision of 3 ppm and that CO2 enhancements can be determined with an accuracy of 1.3 % or 0.9 ppm, whichever is larger. We introduce an anemometer calibration method to minimize the effect of rotor downwash on the wind measurements. This method derives the fit parameters of a linear calibration model accounting for scaling, rotation, and a potential constant bias. For this purpose, it analyzes wind measurements taken while following a suitable flight pattern and assuming stationary wind conditions. From the calibration and validation experiments, we estimate the single measurement precision of the horizontal wind speed to be 0.40 m s−1 and the accuracy to be 0.33 m s−1. By means of two flights downwind of the ExxonMobil natural gas processing facility in Großenkneten about 40 km west of Bremen, Germany, we demonstrate how the measurements of elevated CO2 concentrations can be used to infer mass fluxes of atmospheric CO2 related to the emissions of the facility.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 5 ( 2021-05-26), p. 3837-3869
    Abstract: Abstract. Since 2009, the Greenhouse gases Observing SATellite (GOSAT) has performed radiance measurements in the near-infrared (NIR) and shortwave infrared (SWIR) spectral region. From February 2019 onward, data from GOSAT-2 have also been available. We present the first results from the application of the Fast atmOspheric traCe gAs retrievaL (FOCAL) algorithm to derive column-averaged dry-air mole fractions of carbon dioxide (XCO2) from GOSAT and GOSAT-2 radiances and their validation. FOCAL was initially developed for OCO-2 XCO2 retrievals and allows simultaneous retrievals of several gases over both land and ocean. Because FOCAL is accurate and numerically very fast, it is currently being considered as a candidate algorithm for the forthcoming European anthropogenic CO2 Monitoring (CO2M) mission to be launched in 2025. We present the adaptation of FOCAL to GOSAT and discuss the changes made and GOSAT specific additions. This particularly includes modifications in pre-processing (e.g. cloud detection) and post-processing (bias correction and filtering). A feature of the new application of FOCAL to GOSAT and GOSAT-2 is the independent use of both S- and P-polarisation spectra in the retrieval. This is not possible for OCO-2, which measures only one polarisation direction. Additionally, we make use of GOSAT's wider spectral coverage compared to OCO-2 and derive not only XCO2, water vapour (H2O), and solar-induced fluorescence (SIF) but also methane (XCH4), with the potential for further atmospheric constituents and parameters like semi-heavy water vapour (HDO). In the case of GOSAT-2, the retrieval of nitrous oxide (XN2O) and carbon monoxide (CO) may also be possible. Here, we concentrate on the new FOCAL XCO2 data products. We describe the generation of the products as well as applied filtering and bias correction procedures. GOSAT-FOCAL XCO2 data have been produced for the time interval 2009 to 2019. Comparisons with other independent GOSAT data sets reveal agreement of long-term temporal variations within about 1 ppm over 1 decade; differences in seasonal variations of about 0.5 ppm are observed. Furthermore, we obtain a station-to-station bias of the new GOSAT-FOCAL product to the ground-based Total Carbon Column Observing Network (TCCON) of 0.56 ppm with a mean scatter of 1.89 ppm. The GOSAT-2-FOCAL XCO2 product is generated in a similar way as the GOSAT-FOCAL product, but with adapted settings. All GOSAT-2 data until the end of 2019 have been processed. Because of this limited time interval, the GOSAT-2 results are considered to be preliminary only, but first comparisons show that these data compare well with the GOSAT-FOCAL results and also TCCON.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 2 ( 2021-02-18), p. 1267-1291
    Abstract: Abstract. Methane is the second most important anthropogenic greenhouse gas in the Earth's atmosphere. To effectively reduce these emissions, a good knowledge of source locations and strengths is required. Airborne remote sensing instruments such as the Airborne Visible InfraRed Imaging Spectrometer – Next Generation (AVIRIS-NG) with meter-scale imaging capabilities are able to yield information about the locations and magnitudes of methane sources. In this study, we successfully applied the weighting function modified differential optical absorption spectroscopy (WFM-DOAS) algorithm to AVIRIS-NG data measured in Canada and the Four Corners region. The WFM-DOAS retrieval is conceptually located between the statistical matched filter (MF) and the optimal-estimation-based iterative maximum a posteriori DOAS (IMAP-DOAS) retrieval algorithm, both of which were already applied successfully to AVIRIS-NG data. The WFM-DOAS algorithm is based on a first order Taylor series approximation of the Lambert–Beer law using only one precalculated radiative transfer calculation per scene. This yields the fast quantitative processing of large data sets. We detected several methane plumes in the AVIRIS-NG images recorded during the Arctic-Boreal Vulnerability Experiment (ABoVE) Airborne Campaign and successfully retrieved a coal mine ventilation shaft plume observed during the Four Corners measurement campaign. The comparison between IMAP-DOAS, MF, and WFM-DOAS showed good agreement for the coal mine ventilation shaft plume. An additional comparison between MF and WFM-DOAS for a subset of plumes showed good agreement for one plume and some differences for the others. For five plumes, the emissions were estimated using a simple cross-sectional flux method. The retrieved fluxes originated from well pads, cold vents, and a coal mine ventilation shaft and ranged between (155 ± 71) kg (CH4) h−1 and (1220 ± 450) kg (CH4) h−1. The wind velocity was a significant source of uncertainty in all plumes, followed by the single pixel retrieval noise and the uncertainty due to atmospheric variability. The noise of the retrieved CH4 imagery over bright surfaces (〉1 µW cm−2 nm−1 sr−1 at 2140 nm) was typically ±2.3 % of the background total column of CH4 when fitting strong absorption lines around 2300 nm but could reach over ±5 % for darker surfaces (〈 0.3 µW cm−2 nm−1 sr−1 at 2140 nm). Additionally, a worst case large-scale bias due to the assumptions made in the WFM-DOAS retrieval was estimated to be ±5.4 %. Radiance and fit quality filters were implemented to exclude the most uncertain results from further analysis mostly due to either dark surfaces or surfaces where the surface spectral reflection structures are similar to CH4 absorption features at the spectral resolution of the AVIRIS-NG instrument.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...