GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Climate, American Meteorological Society, Vol. 15, No. 3 ( 2002-02), p. 278-295
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Environmental Research Letters, IOP Publishing, Vol. 3, No. 4 ( 2008-10), p. 044006-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2008
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Climate, American Meteorological Society, Vol. 19, No. 11 ( 2006-06-01), p. 2122-2143
    Abstract: The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2006
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Ecology and the Environment, Wiley, Vol. 9, No. 3 ( 2011-04), p. 174-182
    Abstract: Forestry – including afforestation (the planting of trees on land where they have not recently existed), reforestation, avoided deforestation, and forest management – can lead to increased sequestration of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. However, forestry also influences land‐surface properties, including albedo (the fraction of incident sunlight reflected back to space), surface roughness, and evapotranspiration, all of which affect the amount and forms of energy transfer to the atmosphere. In some circumstances, these biophysical feedbacks can result in local climate warming, thereby counteracting the effects of carbon sequestration on global mean temperature and reducing or eliminating the net value of climate‐change mitigation projects. Here, we review published and emerging research that suggests ways in which forestry projects can counteract the consequences associated with biophysical interactions, and highlight knowledge gaps in managing forests for climate protection. We also outline several ways in which biophysical effects can be incorporated into frameworks that use the maintenance of forests as a climate protection strategy.
    Type of Medium: Online Resource
    ISSN: 1540-9295 , 1540-9309
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 2161292-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1993
    In:  Climatic Change Vol. 24, No. 4 ( 1993-8), p. 281-285
    In: Climatic Change, Springer Science and Business Media LLC, Vol. 24, No. 4 ( 1993-8), p. 281-285
    Type of Medium: Online Resource
    ISSN: 0165-0009 , 1573-1480
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1993
    detail.hit.zdb_id: 751086-X
    detail.hit.zdb_id: 1477652-2
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1991
    In:  Journal of Geophysical Research: Atmospheres Vol. 96, No. D4 ( 1991-04-20), p. 7301-7312
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 96, No. D4 ( 1991-04-20), p. 7301-7312
    Abstract: An ecophysiological model of photosynthesis and respiration by forest ecosystems was used to examine CO 2 fluxes in 23 mature boreal forests near Fairbanks, Alaska. Simulated soil respiration, photosynthesis, decomposition, and moss and tree productivity were consistent with observed data. Monthly ecosystem CO 2 flux and net photosynthesis, averaged over the 23 sites, were correlated with atmospheric CO 2 concentrations and δ 13 ratios, respectively, at Barrow, Alaska, suggesting the boreal forests of Alaska play an active role in the seasonal dynamics of atmospheric CO 2 at Barrow. Only one of the 23 stands was a source of CO 2 , and the 23 stands absorbed (mean ± SE) 1173±211 g CO 2 m −2 yr −1 . Observed productivity in these forests spans the range of productivity in the circumpolar boreal forest, suggesting the simulated CO 2 fluxes are representative of the circumpolar boreal forest. If so, metabolic activity in the circumpolar boreal forest results in a significant annual uptake of CO 2 .
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1991
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1994
    In:  Journal of Geophysical Research Vol. 99, No. D12 ( 1994), p. 25803-
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 99, No. D12 ( 1994), p. 25803-
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1994
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Atmospheres Vol. 100, No. D2 ( 1995-02-20), p. 2817-2831
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 100, No. D2 ( 1995-02-20), p. 2817-2831
    Abstract: CO 2 uptake during plant photosynthesis and CO 2 loss during plant and microbial respiration were added to a land surface process model to simulate the diurnal and annual cycles of biosphere‐atmosphere CO 2 exchange. The model was coupled to a modified version of the National Center for Atmospheric Research Community Climate Model version 2, and the coupled model was run for 5 years. The geographic patterns of annual net primary production are qualitatively similar to other models. When compared by vegetation type, annual production and annual microbial respiration are consistent with other models, except for needleleaf evergreen tree vegetation, where production is too high, and semidesert vegetation, where production and microbial respiration are too low. The seasonally of the net CO 2 flux agrees with other models in the southern hemisphere and the tropics. The diurnal range is large for photosynthesis and lower for plant and microbial respiration, which agrees with qualitative expectations. The simulation of the central United States is poor due to temperature and precipitation biases in the coupled model. Despite these deficiencies the current approach is a promising means to include terrestrial CO 2 fluxes in a climate system model that simulates atmospheric CO 2 concentrations, because it alleviates important parameterization discrepancies between standard biogeochemical models and the land surface models typically used in general circulation models, and because the model resolves the diurnal range of CO 2 exchange, which can be large (15–45 μmol CO 2 m −2 s −1 ).
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    IOP Publishing ; 2015
    In:  Environmental Research Letters Vol. 10, No. 4 ( 2015-04-01), p. 044016-
    In: Environmental Research Letters, IOP Publishing, Vol. 10, No. 4 ( 2015-04-01), p. 044016-
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2015
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2021
    In:  Environmental Research Letters Vol. 16, No. 3 ( 2021-03-01), p. 034022-
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 3 ( 2021-03-01), p. 034022-
    Abstract: Uncertainty in model initial states produces uncertainty in climate simulations because of unforced variability internal to the climate system. Climate scientists use initial-condition ensembles to separate the forced signal of climate change from the unforced internal variability. Our analysis of an 11-member initial-condition ensemble from the Community Earth System Model Version 2 that spans the period 1850–2014 shows that a similar ensemble approach is needed to robustly assess trends in the terrestrial carbon cycle. Uncertainty in model initialization gives rise to internal variability that masks trends in carbon fluxes, and also creates spurious unforced trends, during the period 1960–2014 across North America, meaning that a single model realization can diverge from the observational record or from other models simply because of random behavior. The forced response is, however, evident in the ensemble mean and emerges from the noise of unforced variability at decadal timescales. Our results suggest that trends in the observational record must be interpreted with caution because of multiple possible histories that would have been observed if the sequence of internal variability had unfolded differently. Furthermore, internal variability produces irreducible uncertainty in the carbon cycle, leading to ambiguity in the magnitude and sign of carbon cycle trends, especially at small spatial scales and short timescales. The small spread in initial land carbon pools at 1850 suggests that internal climate variability arising from atmospheric and oceanic initialization, not the biogeochemical initialization, is the predominant cause of carbon cycle variability among ensemble members. Initial-condition ensembles with other Earth system models are needed to develop a multi-model understanding of internal variability in the terrestrial carbon cycle.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...