GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1209-1209
    Abstract: About 20-25% of patients with Acute Myeloid Leukemia (AML) have primary drug resistant disease and fail to achieve complete remission after induction therapy. These patients have an extremely poor prognosis and cannot reliably be identified prior to therapy with current methods. The aim of this work was to develop a predictive tool that can identify therapy resistant patients with high accuracy at the time of diagnosis. We used two independent Affymetrix gene expression (GE) data sets and standard molecular and clinical variables to develop a predictive score for response to cytarabine/anthracycline-based induction chemotherapy. The "training set 1" consisted of 407 adult AML patients enrolled in the AMLCG-1999 trial (GSE37642). Training set 2 included 449 adults treated in various HOVON trials (GSE6891). GE-based classifiers for primary treatment resistance were developed in training set 1 using a penalized logistic regression approach (Lasso). A cut off with a specificity of 90% was predefined in training set 1. Training set 2 was used to select the best classifier. The predictive score and cut off were then validated in a third, fully independent data set, comprising 260 patients enrolled in AMLCG-1999 and 2008 trials studied by RNA sequencing. Additionally, targeted amplicon sequencing data for 68 recurrently mutated genes in AML was available for training set 1 and the validation set. The final classifier (Predictive score 29 MRC - PS29MRC) consisted of 29 gene expression values and the cytogenetic risk group (defined according to the United Kingdom Medical Research Council (MRC) classification) and was calculated as a weighted sum of Lasso coefficients and predictor values. PS29MRC was a highly significant predictor of resistant disease in the validation set with an odds ratio of 2.32 (p=1.53x10-8, AUC: 0.75). We tested the signature in a multivariable model including all variables with univariate p-value & lt;0.05. TP53 mutations, age and PS29MRC (OR: 1.70; p=0.0020) were left significant in the validation set. In comparison to published predictive classifiers like the model by Walter et al. (integrating information on age, performance status, white blood cell count, platelet count, bone marrow blasts, gender, type of AML, cytogenetics and NPM1 and FLT3-ITD status; OR: 1.27; p=0.00083; AUC: 0.70) or the modified molecular version of this score (OR: 1.37; p=0.0027; AUC: 0.63) PS29MRC reached superior predictive accuracy. (Walter et al.; Leukemia 2015) Since we aimed to develop a clinically useful score, we categorized PS29MRC to distinguish between patients who have a high probability of refractory disease and those who are likely to benefit from induction therapy (complete remission or complete remission with incomplete hematologic recovery). By applying the predefined cut off, we were able to reach a specificity of 90% and sensitivity of 46% in the validation set (OR: 7.83; p=6.06x10-9). The accuracy of PS29MRC was 77%. In the multivariable model the categorized classifier was highly significant (OR: 4.45; p=0.00040) and only age and TP53 mutations were left as significant variables again. Within the cytogenetic subgroups favorable (n=14; refractory: n=0; responders: n=13), intermediate (n=189; refractory: n=43; responders: n=136) and adverse (n=49; refractory: n=29; responders: n=15) the classifier showed an accuracy of 100%, 78% and 66%, respectively. Furthermore, the classifier predicted survival and was able to unravel the intermediate MRC subgroup (Figure). Additionally, genes included in our predictive signature seem to be involved in AML pathogenesis and potentially actively contribute to mechanisms responsible for primary therapeutic resistance. For example MIR-155HG, an already known parameter of inferior outcome in AML, contributed significantly to PS29MRC. There are currently ongoing trials with the novel inhibitor Pevonedistat that aim to modulate this target in AML. In summary we were able to develop a predictive risk classifier summarizing 29 gene expression values and the MRC classification that outperformed all currently used methods to predict refractory disease in intensively treated adult AML patients. PS29MRC demonstrates that it is possible to identify patients at risk of treatment failure in AML at diagnosis with high specificity. Figure 1. Kaplan-Meier estimates showing overall survival of AML patients in the validation set according to PS29MRC Figure 1. Kaplan-Meier estimates showing overall survival of AML patients in the validation set according to PS29MRC Figure 2. Figure 2. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 828-828
    Abstract: T-cell acute lymphoblastic leukemia (T-ALL) in adults represents a disease with a rather unfavourable prognosis. Despite the fact that treatment stratification and minimal residual disease (MRD) monitoring have improved survival, there is still need to improve outcome by the development of novel targeted therapies. Therefore, molecular alterations are in the focus of on-going research. Until recently only few candidates were identified as recurringly mutated genes including NOTCH1, FBXW7, PTEN. The development of next generation sequencing (NGS) significantly enlarged this spectrum and identified alterations in additional genes (BCL11B, PHF6, DNM2, CNOT3, KRAS, NRAS, DNMT3A). Whereas a number of putative driver mutations have been characterized, the spectrum of recurring alterations in larger cohorts and their relevance in different leukemic subgroups remains unexplored. To unravel relevant recurring alterations in a large cohort of adult T-ALL and to explore potential target genes for novel therapeutic strategies, we performed targeted high throughput NGS of 88 candidates in 81 T-ALL samples. Patients and methods We investigated 67 adult T-ALL patients enrolled in the trial 07/2003 of the German Acute Lymphoblastic Leukemia Multicenter Study Group (GMALL). In addition, 14 patients with early T-precursor ALL (ETP-ALL) from other GMALL trials were analysed. Customized biotinylated RNA oligo pools (SureSelect, Agilent) were used to select the targeted regions. We performed 76-bp paired-end sequencing on an Illumina Genome Analyzer IIx platform and reads were mapped to NCBI hg19 RefSeq. For a variant call we required at least a read depth of 20, an allele frequency of 20% and an average base calling quality of Q13. Polymorphisms annotated in dbSNP 135 were excluded. The targeted region comprised 88 genes known to be frequently mutated in ALL, acute myeloid leukemia, myelodysplastic syndrome as well as genes associated with epigenetic regulation, splicing, DNA mismatch repair, and the NOTCHpathway. Results We obtained an average of 1.2 Mbp sequence for each sample, resulting in an average coverage of 120 reads for the target region. 79% of the targeted region was covered with a minimum of 20 reads. After exclusion of polymorphism annotated in dbSNP135, 473 single nucleotide variations (SNV) and small indels were identified, 294 of those resulted in changes on the protein level. On average three (3.1) genes per patient were mutated, and 66 (77%) of the 88 genes were mutated in at least one patient. As expected, the highest mutation rate with 53% was found for NOTCH1, with a higher frequency in thymic T-ALL (67.5%) than in early T-ALL (33.3%). Mutation frequencies of FBXW7 (10%), WT1 (10%), JAK3 (12%), and BCL11B (10%) were in the range of reported frequencies. Recently identified novel alterations in DNM2 (17%), PHF6 (11%), DNMT3A (5%) or RELN (5%) were confirmed in our cohort. Interestingly, genes that had not been described in T-ALL included recurring mutations in the histone methyl-transferase MLL2 (11%), frequently mutated in B-cell lymphomas. Like in lymphoma and in the Kabuki syndrome, MLL2 mutations were distributed over the entire gene without any obvious hot spot region. Also the protocadherins FAT1 (15%) and FAT3 (12%) were recurringly altered. FAT1and its inactivation by mutations were recently linked to activation of the WNT pathway in solid tumours. Affected pathways significantly differed in leukemic subgroups: whereas mutations involving the NOTCH pathway were predominately enriched in the thymic subgroup (75%) and less relevant in early T-ALL (33%, P=0.004), chromatin modifiying genes (17% vs. 5%, P=0.22) and signalling genes (42% vs. 15%, P=0.09) were more frequently mutated in early T-ALL. Spliceosome mutations described in myeloid and mature lymphoid malignancies were present only in a minority (7.4%) of T-ALL. Conclusion Adult T-ALL reveals a highly heterogeneous spectrum of candidate gene mutations. Here we provide an original and comprehensive overview of recurring mutations that unravel preferentially pathways altered in specific leukemic subgroups. In addition, we identified novel candidate genes with potential therapeutic implications (FAT1, EZH2, DNMT3A). These mutations have to be validated in a larger cohort with a focus on clinical implications accompanied by functional assays regarding their use as therapeutic targets. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Oncotarget, Impact Journals, LLC, Vol. 6, No. 5 ( 2015-02-20), p. 2754-2766
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 10 ( 2020-10), p. 2621-2634
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1377-1377
    Abstract: Abstract 1377 Introduction: Early T-cell precursor (ETP) ALL accounting for 10% of all T-ALL cases is of special interest because of its proposed origin from early thymic progenitors with multilineage differentiation potential. ETP-ALL is associated with a poorer outcome in pediatric and adult patients. On the molecular level, ETP-ALL is characterized by a specific immunophenotype (CD1-, CD5weak, CD8-, co-expression of stem cell and/or myeloid antigens) and distinct molecular features (expression of stem cell genes, high frequency of FLT3 mutations with absence of NOTCH1 mutations). Whereas a highly heterogeneous genetic pattern was revealed by whole genome sequencing in pediatric patients, the genetic background of adult ETP-ALL remains largely unknown. Here we investigated genetic alterations in adult ETP-ALL by whole exome sequencing and subsequently analyzed specific target genes. Patients and methods: We performed whole exome sequencing of five paired (diagnosis/remission) adult ETP-ALL patients enrolled in German Acute Lymphoblastic Leukemia Multicenter Study Group (GMALL) trials. Using exon capturing from genomic DNA, followed by 76-bp paired-end sequencing on an Illumina Genome Analyzer IIx platform, we generated at least 5 Gb of exome sequence from each ETP-ALL and remission samples. Somatic mutations were identified by comparing the ETP-ALL with the remission exome sequence, excluding all annotated polymorphisms (dbSNP130), non-coding positions and positions with evidence of a variant in the corresponding remission samples. Candidate variants were confirmed by capillary sequencing of genomic DNA. The DNMT3A mutations status was analyzed by Sanger sequencing of exons 11–23 in additional 68 adult ETP-ALL (55 male, 13 female, median age: 38 years) as well as the mutation status of the polycomb repressor complex (PRC) genes EZH2 and SUZ12. For 52 of 68 patients clinical follow-up data were available. Results: Using whole exome sequencing we found a total of 56 non-synonymous somatic mutations or indels in the five ETP-ALL patients (range: 6 to 16 per patient). Eleven mutations/indels affected cancer genes. DNMT3A (2/5) and FAT3 (2/5) were recurrently mutated in the five patients. The DNA-methyl-transferase DNMT3A is a frequent mutational target in acute myeloid leukemia (AML; 20%), whereas FAT3 (FAT, tumor suppressor homolog 3) mutations were recently reported in ovarian carcinoma (TCGA, Nature 2011). Novel mutations identified in adult ETP-ALL involved genes in epigenetic regulation (e.g. MLL2, MLL3, BMI1), and in genes previously reported to be mutated in ETP-ALL (e.g. in JAK1, ETV6, NOTCH1, DNM2). By Sanger sequencing, we screened for DNMT3A mutations in a larger cohort of adult ETP-ALL. DNMT3A mutations were present in 11 of the 68 (16%) patients, a mutation rate similar to AML. Amino acid R882 (exon 23), the most frequently mutated amino acid in AML, was mutated in five ETP-ALL. The remaining six mutations occurred in single spots, with one exception in the ZNF or the MTF domain. Patients with a DNMT3A mutation were significantly older (median: 63 vs 37 years, P=0.016). No correlation was found between DNMT3A and FLT3 mutations (27% in DNMT3A mut pts. vs. 37% in DNMT3A wt pts., P=0.41) or NOTCH1 mutations (10% in DNMT3A mut pts. vs. 16% in DNMT3A wt pts., P=0.47). In addition, we investigated genetic alterations in epigenetic regulators including members of the polycomb repressor complex (PRC). Mutations were seen in EZH2 in 4/68 (6%), SUZ12 in 1/68 (1%) and SH2B3 in 4/69 (6%) of ETP-ALL. Interestingly, patients with at least one mutation in an epigenetic regulator gene (DNMT3A, SUZ12, SH2B3, MLL2, or EZH2) showed a trend towards an inferior survival (one-year-survival: 50% vs. 85%, P=0.08). Conclusion: Adult ETP-ALL patients display a heterogenous spectrum of mutations, particularly affecting genes involved in epigenetic regulation. The spectrum is different to pediatric patients with a lower rate of polycomb repressor complex and a higher rate of DNMT3A mutations. The higher rate of DNMT3A mutations in older patients might point to a different pathogenesis compared to pediatric ETP-ALL. Like in AML, DNMT3A mutations in adult ETP-ALL show a similar frequency, within the same hot spots and are correlated with an adverse prognostic value, underscoring the myeloid character of ETP-ALL. Thus, these data may provide a rationale to use epigenetic therapy in ETP-ALL. Disclosures: Krebs: Illumina: Honoraria. Greif:Illumina: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 121, No. 23 ( 2013-06-06), p. 4749-4752
    Abstract: Exome sequencing of adult ETP-ALL reveals new recurrent mutations; in particular, DNMT3A is frequently mutated in adult ETP-ALL. More than 60% of all adult patients with ETP-ALL harbor a mutation that could potentially be targeted by a specific therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Genes, Chromosomes and Cancer, Wiley, Vol. 56, No. 1 ( 2017-01), p. 75-86
    Abstract: Deletions of the long arm of chromosome 9 [del(9q)] are a rare but recurring aberration in acute myeloid leukemia (AML). Del(9q) can be found as the sole abnormality or in combination with other cytogenetic aberrations such as t(8;21) and t(15;17). TLE1 and TLE4 were identified to be critical genes contained in the 9q region. We performed whole exome sequencing of 5 patients with del(9q) as the sole abnormality followed by targeted amplicon sequencing of 137 genes of 26 patients with del(9q) as sole or combined with other aberrations. We detected frequent mutations in NPM1 (10/26; 38%), DNMT3A (8/26; 31%), and WT1 (8/26; 31%) but only few FLT3 ‐ITDs (2/26; 8%). All mutations affecting NPM1 and DNMT3A were exclusively identified in patients with del(9q) as the sole abnormality and were significantly more frequent compared to 111 patients classified as intermediate‐II according to the European LeukemiaNet (10/14, 71% vs. 22/111, 20%; P   〈  0.001, 8/14, 57% vs. 26/111, 23%; P  = 0.02). Furthermore, we identified DNMT3B to be rarely but recurrently targeted by truncating mutations in AML. Gene expression analysis of 13 patients with del(9q) and 454 patients with normal karyotype or various cytogenetic aberrations showed significant down regulation of TLE4 in patients with del(9q) ( P  = 0.02). Interestingly, downregulation of TLE4 was not limited to AML with del(9q), potentially representing a common mechanism in AML pathogenesis. Our comprehensive genetic analysis of the del(9q) subgroup reveals a unique mutational profile with the frequency of DNMT3A mutations in the del(9q) only subset being the highest reported so far in AML, indicating oncogenic cooperativity. © 2016 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1045-2257 , 1098-2264
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 1018988-9
    detail.hit.zdb_id: 1492641-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-08-13)
    Abstract: The patho-mechanism of somatic driver mutations in cancer usually involves transcription, but the proportion of mutations and wild-type alleles transcribed from DNA to RNA is largely unknown. We systematically compared the variant allele frequencies of recurrently mutated genes in DNA and RNA sequencing data of 246 acute myeloid leukaemia (AML) patients. We observed that 95% of all detected variants were transcribed while the rest were not detectable in RNA sequencing with a minimum read-depth cut-off (10x). Our analysis focusing on 11 genes harbouring recurring mutations demonstrated allelic imbalance (AI) in most patients. GATA2 , RUNX1 , TET2 , SRSF2 , IDH2 , PTPN11 , WT1 , NPM1 and CEBPA showed significant AIs. While the effect size was small in general, GATA2 exhibited the largest allelic imbalance. By pooling heterogeneous data from three independent AML cohorts with paired DNA and RNA sequencing (N = 253), we could validate the preferential transcription of GATA2 -mutated alleles. Differential expression analysis of the genes with significant AI showed no significant differential gene and isoform expression for the mutated genes, between mutated and wild-type patients. In conclusion, our analyses identified AI in nine out of eleven recurrently mutated genes. AI might be a common phenomenon in AML which potentially contributes to leukaemogenesis.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 2514-2514
    Abstract: Abstract 2514 Chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults, still remains poorly understood. Several prognostic markers like the deletion of certain genomic regions as assayed by fluorescence in situ hybridization (FISH), the mutational status of the IGVH locus or the expression levels of ZAP70 have been identified. However, the predictive power of these markers is limited and they cannot fully explain the heterogeneity and the biology of CLL. The addition of monoclonal anti-CD20 antibody (rituximab) to chemotherapy has significantly improved progression-free survival of CLL patients even at second-line treatment (Robak et al. JCO 2010). The aim of our project was to identify new, potentially predictive markers in previously treated patients that reached complete remission after second-line treatment with FC or R-FC (Fludarabine, Cyclophosphamide and Rituximab). We performed whole exome sequencing in 25 CLL samples before second-line treatment and their corresponding disease free remission samples (peripheral blood). Disease free remission was defined as minimal residual disease levels of less than 1×10−3 as measured by the disease specific IGVH rearrangements using quantitative PCR and FISH negativity if a marker was available. The CLL samples had a median of 84% CD19 positive cells. Our CLL patients had a predominance of favorable prognostic markers, 60% being IGVH mutated, 52% with a sole 13q deletion and 16% with a trisomy 12. Only 8% had a prognostically unfavorable 11q deletion, none had a 17p deletion or more than one FISH abnormality (the following genomic regions were analyzed: 6q, 13q, 11q (ATM), trisomy 12, 17p (TP53)). The exomes of the paired CLL and disease free remission samples were captured using the Agilent Sure Select 50 Mb kit (Agilent Technologies, Santa Clara, CA, USA). Sequencing was performed with 76–80 bp paired-end reads on an Illumina IIx Genome Analyzer (Illumina, San Diego, CA, USA). The mean total sequence per exome was 6.6 Gbp, of which 〉 80% could be aligned to the reference genome (build NCBI36/hg18). About 90% of all SureSelect exome target positions were covered ≥ 10 fold. We called single nucleotide variants (SNVs) specific for the CLL samples using VarScan (Koboldt et al Bioinformatics 2009) with custom filter settings. Annotated polymorphisms (dbSNP130) were excluded. About 80% of the SNVs that were predicted to result in a missense or nonsense mutation could be validated by Sanger sequencing. In total we detected 208 somatic missense or nonsense mutations in 198 genes in the 25 CLL exomes. Four genes were found mutated in more than one CLL sample indicating that these might be drivers for CLL. We also compared our gene list with published CLL exome and genome data to identify additional recurrently mutated genes. A total of 2756 mutated genes (harbouring non-synonymous, InDels and splice site mutations) have been described in 200 CLL patients which were predominantly analyzed at first-line treatment (Wang et al NEJM 2011, Puente et al Nature 2011 and Quesada et al Nature Genetics 2012). Within these three public datasets 369 genes were recurrent (found mutated in more than one sample). In our dataset 129 out of 198 mutated genes have not been described as mutated in these three publications. The remaining 69 genes were previously found to be mutated in CLL. Out of these 69 genes 37 can only be identified as recurrent when our data set is taken into consideration. Thus, our study increases the number of recurrently mutated genes in CLL from 369 to 406. We detected three samples with XPO1 mutations; all of which had a non-mutated IGVH status, two had a 13q deletion and one had no FISH aberration. Two patients in our cohort had SF3B1 mutations; both patients had an unmutated IGVH status; one with a 13q deletion and one with no FISH aberration. 24 out of the 25 patients had at least one recurrent mutation taking the public datasets in consideration. Our results are in agreement with other published whole exome and whole genome sequencing reports of CLL and reinforce the picture that CLL is genetically a very heterogeneous disease. In fact, almost all large scale sequencing studies of cancer genomes and exomes indicate that the number of biologically relevant mutational targets is much larger than expected. Our results also highlight the necessity to perform whole exome or whole genome sequencing on ever larger numbers of CLL samples. Disclosures: Konstandin: Roche: Research Funding. Krebs:Illumina: Honoraria. Trunzer:Roche: Employment. Weisser:Roche: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 288-288
    Abstract: Even though two-thirds of acute myeloid leukemia (AML) patients respond to induction chemotherapy and achieve complete remission (CR), the majority of these patients will eventually relapse. The time from CR to relapse is an important clinical indicator of disease aggressiveness, as patients relapsing within the first 6 months after initial diagnosis have a poorer prognosis in terms of response to salvage therapy and overall survival compared to patients with a later relapse. To learn about the evolution during the course of disease, we analyzed the somatic mutation patterns from initial diagnosis to relapse in 50 cytogenetically normal (CN) AML patients. Based on the ELN classification, 38% of the patients (n=19) were assigned as "favorable" at diagnosis, all other patients were classified as "intermediate-I". ELN classification was associated with time to relapse as "intermediate-I" patients relapsed earlier than "favorable" patients (median 9.3 months vs. 16.1 months, p=0.008, log-rank test). Somatic alterations were detected by exome sequencing and confirmed by targeted amplicon sequencing of matched diagnostic, remission and relapse samples. FLT3-ITD and NPM1 mutation status were obtained from routine diagnostic tests as the reliable detection of these markers by NGS remains challenging. The vast majority of somatic alterations were present both at diagnosis and at relapse, hereafter referred to as stable mutations (70%, Fig. 1A). All patients in our cohort had ≥1 stable mutation with DNMT3A being the most stably altered gene. In 47 out of 50 patients (94%), we observed mutations that were only found at diagnosis or only at relapse. Based on the mutation patterns, four distinct 'evolutionary' subgroups of patients were defined (Fig. 1B): (I) patients with an identical mutation profile at diagnosis and at relapse ("stable", n=3, 6%), (II) patients who gained mutations at relapse ("stable + gain", n=24, 48%), (III) patients that lost mutations at relapse ("stable + loss", n=8, 16%), and (IV) patients with both loss and gain of mutations at relapse ("mixed", n=15, 30%). Mutations that were lost during the course of the disease were detected in e.g. PTPN11 or NRAS. Relapse-specific mutations were identified in e.g. IDH1/2, WT1, KPNB1 or KDM6A. Evolutionary subgroups showed differences in time to relapse (Fig. 1C). Patients with "stable + loss" relapsed earlier (median 4.1 months) than patients with gain of mutation at relapse (groups "stable + gain" and "mixed", median 12.2 months). All patients in the category "stable + loss" developed relapse within the first year after complete remission. The "stable" group of 3 patients showed an intermediate time to relapse (median 9.6 months), but was too small for a statistically valid comparison. Ultimately, the genetic evolution of CN-AML patients without gain of new mutations at relapse (categories "stable" and "stable + loss") was associated with significantly earlier relapse compared to patients that gained mutations at relapse (categories "stable + gain" and "mixed", Fig. 1D, p=0.001, log-rank test). Distinct predominant patterns of clonal evolution were observed in the ELN genetic groups, as only one patient of the "stable + loss" group was initially classified as "favorable". Interestingly, applying the ELN classification on relapse samples revealed a switch from "favorable" to "intermediate-I" in six patients, all with gain of mutations at relapse. This points towards more aggressive genetic profiles at relapse in these patients. The acquisition of mutations and/or the outgrowth of a resistant clone during/after chemotherapy might require a longer time or is per se associated with a longer time to relapse and a more favorable prognosis. Loss of mutations at relapse suggest the presence of two clones at diagnosis, with a chemotherapy resistant clone expanding after the eradication of a chemotherapy sensitive clone. As both clones share mutations and only the sensitive clone contains specific alterations, the resistant clone might be an ancestor of the sensitive clone. Taken together, in some patients the AML cells may require additional genetic alterations to become chemotherapy resistant, whereas in other patients the selective eradication of a sensitive clone is a potential mechanism underlying disease progression. Understanding the evolution of AML under selective pressure of chemotherapy is essential to cure or prevent AML relapse. Disclosures Hiddemann: Roche: Other: Grants; Genentech: Other: Grants; Roche: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...