GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Genetics, Frontiers Media SA, Vol. 13 ( 2023-1-4)
    Abstract: Tomato is one of the most significant vegetable crops, which provides several important dietary components. Pakistan has a significant low tomato yield compared to other countries because of low genetic diversity and the absence of improved cultivars. The present study aimed to investigate the genetic variability, heritability, and genetic advance for yield and yield-related traits in tomato. For this purpose, eight tomato parents and their 15 crosses or hybrids were evaluated to study the relevant traits. Significant variation was observed for all studied traits. Higher values of the genotypic coefficient of variability (GCV) and phenotypic coefficient of variability (PCV) were recorded for yield per plant (YP) (kg) (37.62% and 37.79%), as well as the number of fruits per cluster (NFRC) (31.52% and 31.71%), number of flowers per cluster (24.63 and 24.67), and single fruit weight (g) (23.49 and 23.53), which indicated that the selection for these traits would be fruitful. Higher heritability (h 2 ) estimates were observed for the number of flowers per cluster (NFC) (0.99%), single fruit weight (SFW) (g) (0.99%), and yield per plant (YP) (kg) (0.99%). Single fruit weight (SFW) (g) exhibited higher values for all components of variability. High genetic advance as a % of the mean (GAM) coupled with higher heritability (h 2 ) was noted for the yield per plant (YP) (kg) (52.58%) and the number of fruits per cluster (NFRC) (43.91). NFRC and SFW (g) had a highly significant correlation with YP (kg), while FSPC had a significant positive association with YP (kg), and these traits can be selected to enhance YP (kg). Among the 15 hybrids, Nagina × Continental, Pakit × Continental, and Roma × BSX-935 were selected as high-yielding hybrids for further evaluation and analysis. These findings revealed that the best performing hybrids could be used to enhance seed production and to develop high-yielding varieties. The parents could be further tested to develop hybrids suitable for changing climatic conditions. The selection of YP (kg), SFW (g), NFC, and NFRC would be ideal for selecting the best hybrids.
    Type of Medium: Online Resource
    ISSN: 1664-8021
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2606823-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Genes, MDPI AG, Vol. 14, No. 1 ( 2022-12-22), p. 31-
    Abstract: Drought stress is a significant abiotic factor influencing maize growth and development. Understanding the molecular mechanism of drought tolerance is critical to develop the drought tolerant genotype. The identification of the stress responsive gene is the first step to developing a drought tolerant genotype. The aim of the current research was to pinpoint the genes that are essential for conserved samples in maize drought tolerance. In the current study, inbred lines of maize, 478 and H21, a drought-tolerant and susceptible line, were cultivated in the field and various treatments were applied. The circumstances during the vegetative stage (severe drought, moderate drought and well-watered environments) and RNA sequencing were used to look into their origins. In 478, 68%, 48% and 32% of drought-responsive genes (DRGs) were found, with 63% of DRGs in moderate drought and severe drought conditions in H21, respectively. Gene ontology (GO) keywords were explicitly enriched in the DRGs of H21, which were considerably over-represented in the two lines. According to the results of the GSEA, “phenylpropanoid biosynthesis” was exclusively enriched in H21, but “starch and sucrose metabolism” and “plant hormone signal transduction” were enhanced in both of the two lines. Further investigation found that the various expression patterns of genes linked to the trehalose biosynthesis pathway, reactive oxygen scavenging, and transcription factors, may have a role in maize’s ability to withstand drought. Our findings illuminate the molecular ways that respond to lack and offer gene resources for maize drought resistance. Similarly, SNP and correlation analysis gave us noticeable results that urged us to do the same kind of analysis on other crops. Additionally, we isolated particular transcription factors that could control the expression of genes associated to photosynthesis and leaf senescence. According to our findings, a key factor in tolerance is the equilibrium between the induction of leaf senescence and the preservation of photosynthesis under drought.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Biomolecular Structure and Dynamics, Informa UK Limited, Vol. 41, No. 18 ( 2023-12-12), p. 9121-9133
    Type of Medium: Online Resource
    ISSN: 0739-1102 , 1538-0254
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2085732-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: EBioMedicine, Elsevier BV, Vol. 45 ( 2019-07), p. 92-107
    Type of Medium: Online Resource
    ISSN: 2352-3964
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2799017-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Oncogenesis, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2021-01-14)
    Abstract: Dedifferentiation increased cellular plasticity and stemness are established derivers of tumor heterogeneity, metastasis and therapeutic failure resulting in incurable cancers. Therefore, it is essential to decipher pro/forward-differentiation mechanisms in cancer that may serve as therapeutic targets. We found that interfering with expression of the receptor for the lactogenic hormone prolactin (PRLR) in breast cancer cells representative of the luminal and epithelial breast cancer subtypes (hormone receptor positive (HR+) and HER2-enriched (HER2-E) resulted in loss of their differentiation state, enriched for stem-like cell subpopulations, and increased their tumorigenic capacity in a subtype-specific manner. Loss of PRLR expression in HR+ breast cancer cells caused their dedifferentiation generating a mesenchymal-basal-like phenotype enriched in CD44+ breast cancer stem-like cells (BCSCs) showing high tumorigenic and metastatic capacities and resistance to anti-hormonal therapy. Whereas loss of PRLR expression in HER2-E breast cancer cells resulted in loss of their luminal differentiation yet enriched for epithelial ALDH+ BCSC population showing elevated HER2-driven tumorigenic, multi-organ metastatic spread, and resistance to anti-HER2 therapy. Collectively, this study defines PRLR as a driver of precise luminal and epithelial differentiation limiting cellular plasticity, stemness, and tumorigenesis and emphasizing the function of pro/forward-differentiation pathways as a foundation for the discovery of anti-cancer therapeutic targets.
    Type of Medium: Online Resource
    ISSN: 2157-9024
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2674437-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Frontiers in Nutrition, Frontiers Media SA, Vol. 9 ( 2022-9-26)
    Abstract: Industrial pomaces are cheap sources of phenolic compounds and fibers but dumping them in landfills has negative environmental and health consequences. Therefore, valorizing these wastes in the food industry as additives significantly enhances the final product. In this study, the citrus pomaces, orange pomace (OP), mandarin pomace (MP), and lemon pomace (LP) were collected by a juice company and subjected to producing polyphenols and fiber-enriched fractions, which are included in functional yogurt; the pomace powder with different levels (1, 3, and 5%) was homogenized in cooled pasteurized milk with other ingredients (sugar and starter) before processing the yogurt fermentation. The HPLC phenolic profile showed higher phenolic content in OP extract, i.e., gallic acid (1,702.65), chlorogenic acid (1,256.22), naringenin (6,450.57), catechin (1,680.65), and propyl gallate (1,120.37) ppm with massive increases over MP (1.34–37 times) and LP (1.49–5 times). The OP extract successfully scavenged 87% of DPPH with a relative increase of about 16 and 32% over LP and MP, respectively. Additionally, it inhibits 77–90% of microbial growth at 5–8 μg/mL while killing them in the 9–14 μg/mL range. Furthermore, OP extract successfully reduced 77% of human breast carcinoma. Each of pomace powder sample (OP, MP, LP) was added to yogurt at three levels; 1, 3, and 5%, while the physiochemical, sensorial, and microbial changes were monitored during 21 days of cold storage. OP yogurt had the highest pH and lowest acidity, while LP yogurt recorded the reverse. High fat and total soluble solids (TSS) content are observed in OP yogurt because of the high fiber content in OP. The pH values of all yogurt samples decreased, while acidity, fat, and TSS increased at the end of the storage period. The OP yogurts 1 and 3% scored higher in color, flavor, and structure than other samples. By measuring the microbial load of yogurt samples, the OP (1 and 3%) contributes to the growth of probiotics ( Lactobacillus spp) in yogurt samples and reduces harmful microbes. Using citrus pomace as a source of polyphenols and fiber in functional foods is recommended to enhance their physiochemical and sensory quality.
    Type of Medium: Online Resource
    ISSN: 2296-861X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2776676-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2023-05-23)
    Abstract: Triple-negative breast cancer (TNBC) subtype is characterized by aggressive clinical behavior and poor prognosis patient outcomes. Here, we show that ADAR1 is more abundantly expressed in infiltrating breast cancer (BC) tumors than in benign tumors. Further, ADAR1 protein expression is higher in aggressive BC cells (MDA-MB-231). Moreover, we identify a novel interacting partners proteins list with ADAR1 in MDA-MB-231, using immunoprecipitation assay and mass spectrometry. Using iLoop, a protein–protein interaction prediction server based on structural features, five proteins with high iloop scores were discovered: Histone H2A.V, Kynureninase (KYNU), 40S ribosomal protein SA, Complement C4-A, and Nebulin (ranged between 0.6 and 0.8). In silico analysis showed that invasive ductal carcinomas had the highest level of KYNU gene expression than the other classifications (p  〈  0.0001). Moreover, KYNU mRNA expression was shown to be considerably higher in TNBC patients (p  〈  0.0001) and associated with poor patient outcomes with a high-risk value. Importantly, we found an interaction between ADAR1 and KYNU in the more aggressive BC cells. Altogether, these results propose a new ADAR-KYNU interaction as potential therapeutic targeted therapy in aggressive BC.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Nutrition, Frontiers Media SA, Vol. 10 ( 2023-6-21)
    Abstract: Dietary medicinal plants are among the most sought-after topics in alternative medicine today due to their preventive and healing properties against many diseases. Aim This study aimed to extract and determine the polyphenols from indigenous plants extracts, i.e., Mentha longifolia, M. arvensis, Tinospora cordifolia, Cymbopogon citratus, Foeniculum vulgare, Cassia absus, Camellia sinensis, Trachyspermum ammi , C. sinensis and M. arvensis , then evaluate the antioxidant, cytotoxicity, and antimicrobial properties, besides enzyme inhibition of isolated polyphenols. Methods The antioxidant activity was evaluated by DPPH, Superoxide radical, Hydroxyl radical (OH . ), and Nitric oxide (NO . ) scavenging activity; the antidiabetic activity was evaluated by enzymatic methods, and anticancer activity using MTT assay, while the antibacterial activity. Results The results showed that tested medicinal plants’ polyphenolic extracts (MPPE) exhibited the most significant antioxidant activity in DPPH, hydroxyl, nitric oxide, and superoxide radical scavenging methods because of the considerable amounts of total polyphenol and flavonoid contents. UHPLC profile showed twenty-five polyphenol complexes in eight medicinal plant extracts, categorized into phenolic acids, flavonoids, and alkaloids. The main polyphenol was 3-Feroylquinic acid (1,302 mg/L), also found in M. longifolia , C. absus , and C. sinensis , has a higher phenolic content, i.e., rosmarinic acid, vanillic acid, chlorogenic acid, p-coumaric acid, ferulic acid, gallic acid, catechin, luteolin, 7- O -neohesperideside, quercetin 3,7- O -glucoside, hesperidin, rutin, quercetin, and caffeine in the range of (560–780 mg/L). At the same time, other compounds are of medium content (99–312 mg/L). The phenolics in C. sinensis were 20–116% more abundant than those in M. longifolia , C. absus , and other medicinal plants. While T. cordifolia is rich in alkaloids, T. ammi has a lower content. The MTT assay against Caco-2 cells showed that polyphenolic extracts of T. ammi and C. citratus had maximum cytotoxicity. While M. arvensis, C. sinensis , and F. vulgare extracts showed significant enzyme inhibition activity, C. sinensis showed minor inhibition activity against α-amylase. Furthermore, F. vulgare and C. sinensis polyphenolic extracts showed considerable antibacterial activity against S. aureus, B. cereus, E. coli , and S. enterica . Discussion The principal component analysis demonstrated clear separation among medicinal plants’ extracts based on their functional properties. These findings prove the therapeutic effectiveness of indigenous plants and highlight their importance as natural reserves of phytogenic compounds with untapped potential that needs to be discovered through advanced analytical methods.
    Type of Medium: Online Resource
    ISSN: 2296-861X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2776676-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Antioxidants, MDPI AG, Vol. 12, No. 1 ( 2023-01-05), p. 134-
    Abstract: Gymnema sylvestre (GS) is a perennial woody vine native to tropical Asia, China, the Arabian Peninsula, Africa and Australia. GS has been used as a medicinal plant with potential anti-microbial, anti-inflammatory and anti-oxidant properties. This study was conceptualized to evaluate the cytotoxicity potential of Gymnema sylvestre saponin rich fraction (GSSRF) on breast cancer cell lines (MCF-7 and MDA-MB-468) by SRB assay. The anti-tumor activity of GSSRF was assessed in tumor-bearing Elrich ascites carcinoma (EAC) and Dalton’s lymphoma ascites (DLA) mouse models. The anti-oxidant potential of GSSRF was assessed by DPPH radical scavenging assay. The acute toxicity of GSSRF was carried out according to OECD guideline 425. The yield of GSSRF was around 1.4% and the presence of saponin content in GSSRF was confirmed by qualitative and Fourier transform infrared spectroscopic (FTIR) analysis. The in vitro cytotoxic effects of GSSRF on breast cancer cell lines were promising and found to be dose-dependent. An acute toxicity study of GSSRF was found to be safe at 2000 mg/kg body weight. GSSRF treatment has shown a significant increase in the body weight and the life span of EAC-bearing mice in a dose-dependent manner when compared with the control group. In the solid tumor model, the doses of 100 and 200 mg/kg body weight per day have shown about 46.70% and 60.80% reduction in tumor weight and controlled the tumor weight until the 30th day when compared with the control group. The activity of GSSRF in both models was similar to the cisplatin, a standard anticancer agent used in the study. Together, these results open the door for detailed investigations of anti-tumor potentials of GSSRF in specific tumor models, mechanistic studies and clinical trials leading to promising novel therapeutics for cancer therapy.
    Type of Medium: Online Resource
    ISSN: 2076-3921
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704216-9
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Agriculture, MDPI AG, Vol. 12, No. 7 ( 2022-06-29), p. 944-
    Abstract: In paddy fields, overuse of nitrogen fertilizer to maximize yields can lead to excessive economic loss and degradation of the environment. Therefore, studying the effects of urea–chitosan nanohybrid as a slow released source of nitrogen fertilizer on rice cultivation was the aim of our study. The effects of fertilization applications, namely: CU: control treatment; U1: application of a full recommended dose of classical urea (165 kg N ha−1); U2: adding recommended dose of classical urea by 80% + exogenous urea–chitosan nanohybrid 250 mg N/L; U3: adding recommended dose of classical urea by 80% + exogenous urea–chitosan nanohybrid 500 mg N/L; U4: adding recommended dose of classical urea by 60% + exogenous urea–chitosan nanohybrid 250 mg N/L; U5: adding recommended dose of classical urea by 60% + exogenous urea–chitosan nanohybrid 500 mg N/L; U6: adding recommended dose of classical urea by 40% + exogenous urea–chitosan nanohybrid 250 mg N/L; and U7: adding recommended dose of classical urea by 40% + exogenous urea–chitosan nanohybrid 500 mg N/L on growth indicators, yield-related components, grain productivity, and N uptake status of rice plants were investigated during two successive seasons. As a result, significant achievements concerning growth, yield and yield-related traits were obtained when rice plants were fertilized with exogenous urea–chitosan nanohybrid (i.e., 500 mg N/L) + 60% classical urea without a significant decline in the studied traits compared to the full recommended dose of classical urea. Accordingly, this investigation revealed that chitosan nanohybrid at 500 mg N/L as a compensatory alternative can be used in saving 40% of classical urea requirement.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651678-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...