GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Pharmaceuticals, MDPI AG, Vol. 14, No. 9 ( 2021-09-18), p. 937-
    Kurzfassung: Alzheimer’s disease (AD) is a progressive neurological disorder that affects 50 million people. Despite this, only two classes of medication have been approved by the FDA. Therefore, we have planned to develop therapeutics by multitarget approach. We have explored the library of 2029 natural product-like compounds for their multi-targeting potential against AD by inhibiting AChE, BChE (cholinergic pathway) MAO-A, and MOA-B (oxidative stress pathway) through in silico high-throughput screening and molecular dynamics simulation. Based on the binding energy of these target enzymes, approximately 189 compounds exhibited a score of less than −10 kcal/mol against all targets. However, none of the control inhibitors exhibited a binding affinity of less than −10 kcal/mol. Among these, the top 10 hits of compounds against all four targets were selected for ADME-T analysis. As a result, only F0850-4777 exhibited an acceptable range of physicochemical properties, drug-likeness, pharmacokinetics, and suitability for BBB permeation with high GI-A and non-toxic effects. The molecular dynamics study confirmed that F0850-4777 remained inside the binding cavity of targets in a stable conformation throughout the simulation and Prime-MM/GBSA study revealed that van der Waals’ energy (ΔGvdW) and non-polar solvation or lipophilic energy (ΔGSol_Lipo) contribute favorably towards the formation of a stable protein–ligand complex. Thus, F0850-4777 could be a potential candidate against multiple targets of two pathophysiological pathways of AD and opens the doors for further confirmation through in vitro and in vivo systems.
    Materialart: Online-Ressource
    ISSN: 1424-8247
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2193542-7
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: SSRN Electronic Journal, Elsevier BV
    Materialart: Online-Ressource
    ISSN: 1556-5068
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2022
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Healthcare, MDPI AG, Vol. 9, No. 8 ( 2021-07-24), p. 934-
    Kurzfassung: Background: Hepatitis B and C viral infections, which are the most common cause of liver infection worldwide, are major health issues around the globe. People with chronic hepatitis infections remain at risk of liver cirrhosis and hepatic carcinoma, while also being a risk to other diseases. These infections are highly contagious in nature, and the prevention of hepatitis B and C transmission during blood transfusion is a major challenge for healthcare workers. Although epidemiological characteristics of hepatitis B and C infections in blood donors in Saudi Arabia have been previously investigated in multiple studies, due to targeted cohorts and the vast geographical distribution of Saudi Arabia, there are a lot of missing data points, which necessitates further investigations. Aim of the study: This study aimed to determine the prevalence of hepatitis B and hepatitis C viral infections among blood donors in the northern region of Riyadh, Saudi Arabia. Methods: To determine the given objectives, a retrospective study was performed which included data gathered from serological as well as nucleic acid test (NAT) screening of blood donors. Clinical data of 3733 blood donors were collected for a period of 2 years (from January 2019 to December 2020) at the blood bank of King Khalid General Hospital and the associated blood banks and donation camps in the region. Statistical analysis of the clinical data was performed using SPSS. Results: The blood samples of 3733 donors were analyzed to determine the seroprevalence of hepatitis B and C among the blood donors in the northern region of Riyadh, Saudi Arabia. Among the total of 3733 blood donors, 3645 (97.65%) were men and 88 (2.36%) were women. Most of the donors were younger than 27 years of age (n = 1494). The most frequent blood group in our study was O-positive (n = 1534), and the least frequent was AB-negative (n = 29). After statistically analyzing the clinical data, we observed that 7 (0.19%), 203 (5.44%) and 260 (6.96%) donor blood samples were positive for the HBV serological markers HBsAgs, HBsAbs and HBcAbs, respectively, and 12 (0.32%) blood samples reacted positively to anti-HCV antibodies. Moreover, 10 (0.27%) and 1 (0.027%) samples were NAT-HBV positive and NAT-HCV positive, respectively. Conclusion: In the current study, low prevalence rates of HBV and HCV were observed in the blood donors. Statistical correlations indicated that both serological tests and NATs are highly effective in screening potential blood donors for HBV and HCV, which, in turn, prevents potential transfusion-transmitted hepatitis.
    Materialart: Online-Ressource
    ISSN: 2227-9032
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2721009-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Entropy, MDPI AG, Vol. 24, No. 5 ( 2022-04-23), p. 593-
    Kurzfassung: Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer’s disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3β, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B–protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B–protein complexes.
    Materialart: Online-Ressource
    ISSN: 1099-4300
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2014734-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Frontiers in Neuroscience, Frontiers Media SA, Vol. 16 ( 2022-7-25)
    Kurzfassung: Alzheimer's disease (AD) is a neurodegenerative disease and the most prevalent form of dementia. The generation of oxygen free radicals and oxidative damage is believed to be involved in the pathogenesis of AD. It has been suggested that date palm, a plant rich in phenolic compounds and flavonoids, can provide an alternative treatment to fight memory loss and cognitive dysfunction due to its potent antioxidant activity. Thus, we studied the effect of flavonoids present in date palm on Aβ 1−40 amyloid formation using molecular docking and molecular dynamics simulation. AutoDock. Myricetin was used as a positive control drug. The flavonoids Diosmetin, Luteolin, and Rutin were found to be potent inhibitors of aggregation (docking energies ≤ −8.05 kcal mol −1 ) targeting Aβ 1−40 fibrils (both 2LMO and 6TI5), simultaneously. Further screening by physicochemical properties and drug-likeness analysis suggested that all flavonoids except Rutin followed Lipinski's rule of five. Rutin was, thus, taken as a negative control (due to its violation of Lipinski's rule) to compare its dynamics with Diosmetin. Diosmetin exhibited the highest positive scores for drug likeness. Since Luteolin exhibited moderate drug-likeness and better absorption properties, it was also included in molecular dynamics simulation. Molecular dynamics of shortlisted compounds (Rutin, Diosmetin, and Luteolin) were performed for 200 ns, and the results were analyzed by monitoring root mean square deviations (RMSD), root mean square fluctuation (RMSF) analysis, the radius of gyration (Rg), and solvent accessible surface area (SASA). The results proved the formation of a stable protein-compound complex. Based on binding energies and non-bonded interactions, Rutin and Luteolin emerged as better lead molecules than Diosmetin. However, high MW (610.5), lowest absorption rate (16.04%), and more than one violation of Lipinski's rule make Rutin a less likely candidate as an anti-amyloidogenic agent. Moreover, among non-violators of Lipinski's rule, Diosmetin exhibited a greater absorption rate than Luteolin as well as the highest positive scores for drug-likeness. Thus, we can conclude that Diosmetin and Luteolin may serve as a scaffold for the design of better inhibitors with higher affinities toward the target proteins. However, these results warrant in-vitro and in-vivo validation before practical use.
    Materialart: Online-Ressource
    ISSN: 1662-453X
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2411902-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Sciencedomain International ; 2021
    In:  Journal of Pharmaceutical Research International ( 2021-03-15), p. 46-57
    In: Journal of Pharmaceutical Research International, Sciencedomain International, ( 2021-03-15), p. 46-57
    Kurzfassung: Aims: Hyptis suaveolens (L.) Poit, is one of the natural herbs with several medicinal properties. However, many medicinal aspects of this herb still need to be explored. Therefore, our aim was to examine the antioxidant, antimicrobial properties and genoprotective effect of H. suaveolens methanolic extracts (HSME) of seed, stem, and root. Study design: extraction and therapeutic aspects of H. suaveolens. Place and Duration of Study: 1) Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah and 2) Clinical Biochemistry & Natural Product research laboratory, Department of Biosciences, Integral University, lucknow between 2018-2020. Methodology: HSME were extracted through soxhlet extractor and further analyzed for TPC, antioxidant activity through DPPH and FRAP assay followed by antimicrobial potential through zone of inhibition and MIC/MBC assay. We also examined the genoprotective properties of HSME on oxidative DNA damage. Results: Our results showed that TPC (180±5 mg GAE/g dw), DPPH scavenging activity (IC50 value = 72±0.45 µg/ml) and FRAP value (1.443±0.02 µM ferrous ion/mg extract) was highest in HSME seeds followed by root and stem. The results also illustrated that the antimicrobial activity of HSME (seed and stem) against five bacterial strain were found very effective than root part. Moreover, genoprotective effect of HSME seeds (80±3 % retention) was better than stem (41±2 %) and root (32±2 %) extract. Conclusion: The study revealed that HSME seed extract showed potential bioactivities might be due to presence of high TPC and can be used to treat diseases related with oxidative stress or microbial infections.
    Materialart: Online-Ressource
    ISSN: 2456-9119
    Sprache: Unbekannt
    Verlag: Sciencedomain International
    Publikationsdatum: 2021
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Journal of Infection and Public Health, Elsevier BV, Vol. 11, No. 5 ( 2018-09), p. 702-706
    Materialart: Online-Ressource
    ISSN: 1876-0341
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2018
    ZDB Id: 2467587-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Frontiers in Pharmacology, Frontiers Media SA, Vol. 13 ( 2022-2-14)
    Kurzfassung: Dietary polyphenols including phenolic acids, flavonoids, catechins, tannins, lignans, stilbenes, and anthocyanidins are widely found in grains, cereals, pulses, vegetables, spices, fruits, chocolates, and beverages like fruit juices, tea, coffee and wine. In recent years, dietary polyphenols have gained significant interest among researchers due to their potential chemopreventive/protective functions in the maintenance of human health and diseases. It is believed that dietary polyphenols/flavonoids exert powerful antioxidant action for protection against reactive oxygen species (ROS)/cellular oxidative stress (OS) towards the prevention of OS-related pathological conditions or diseases. Pre-clinical and clinical evidence strongly suggest that long term consumption of diets rich in polyphenols offer protection against the development of various chronic diseases such as neurodegenerative diseases, cardiovascular diseases (CVDs), cancer, diabetes, inflammatory disorders and infectious illness. Increased intake of foods containing polyphenols (for example, quercetin, epigallocatechin-3-gallate, resveratrol, cyanidin etc.) has been claimed to reduce the extent of a majority of chronic oxidative cellular damage, DNA damage, tissue inflammations, viral/bacterial infections, and neurodegenerative diseases. It has been suggested that the antioxidant activity of dietary polyphenols plays a pivotal role in the prevention of OS-induced human diseases. In this narrative review, the biological/pharmacological significance of dietary polyphenols in the prevention of and/or protection against OS-induced major human diseases such as cancers, neurodegenerative diseases, CVDs, diabetes mellitus, cancer, inflammatory disorders and infectious diseases have been delineated. This review specifically focuses a current understanding on the dietary sources of polyphenols and their protective effects including mechanisms of action against various major human diseases.
    Materialart: Online-Ressource
    ISSN: 1663-9812
    Sprache: Unbekannt
    Verlag: Frontiers Media SA
    Publikationsdatum: 2022
    ZDB Id: 2587355-6
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Sciencedomain International ; 2021
    In:  Journal of Pharmaceutical Research International ( 2021-12-08), p. 30-42
    In: Journal of Pharmaceutical Research International, Sciencedomain International, ( 2021-12-08), p. 30-42
    Kurzfassung: Aims: Diabetes mellitus (DM) is chronic disorder well known for increased glucose level in blood. This disease can be controlled by inhibiting the enzyme (e.g., α-amylase) involve in carbohydrate hydrolysis. Senna auriculata leaves methanolic extract (SALME) have potential antidiabetic properties and it was also found to be safe in preclinical studies. In this study the aim was to explore the molecular interactions of α-amylase and bioactive compounds in SALME and their physicochemical properties. Methodology: Computational approach such as molecular docking and physicochemical analysis prediction was applied to understand the antidiabetic potential of natural compounds present in SALME. Results: The results showed from physicochemical analysis that out of 11 only 7 compounds are having drug like properties which are orally and intestinally better bioavailable. Furthermore, molecular docking analysis explained that three compounds (C3, C4, and C7) have lower binding energy, ΔG (-8, -9.1, -9.5 kcal/mol) and better binding affinity, Ki (7.31 x 105, 4.68 x 106, and 9.2 x 106 M-1, respectively) than the acarbose ΔG (-7.8 kcal/mol) and Ki (6.18 x 105 M-1), a well-known FDA approved medication for DM. The study also explained the binding pattern that the catalytic residue such as Asp197, Glu233 and Asp300 are involved in stabilizing the natural compounds with in the catalytic active site of target enzyme. Conclusions: From the results it has been concluded that these three compounds found in SALME have better inhibitory potential for α-amylase in comparison with acarbose. Further validation of the findings is required through molecular dynamics simulation, ADME-T study, and in-vitro enzyme inhibition by the purified compounds.
    Materialart: Online-Ressource
    ISSN: 2456-9119
    Sprache: Unbekannt
    Verlag: Sciencedomain International
    Publikationsdatum: 2021
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: Bioscience Reports, Portland Press Ltd., Vol. 41, No. 1 ( 2021-01-29)
    Kurzfassung: Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with −10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.
    Materialart: Online-Ressource
    ISSN: 0144-8463 , 1573-4935
    Sprache: Englisch
    Verlag: Portland Press Ltd.
    Publikationsdatum: 2021
    ZDB Id: 2014993-1
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...