GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 308, No. 5725 ( 2005-05-20), p. 1127-1133
    Abstract: The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude ( M w ) = 9.1 to 9.3] and 28 March 2005 ( M w = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2005
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 310, No. 5753 ( 2005-12-02), p. 1431-1431
    Abstract: We support the revised estimate of tsunami source length (∼800 km) obtained by Neetu et al . Sea-level monitoring with a high sampling rate, good azimuthal coverage, and real-time access, along with detailed bathymetry data around the stations, would improve source region estimation from tsunami arrival times.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2005
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Geological Society of America ; 2003
    In:  Geology Vol. 31, No. 5 ( 2003), p. 455-
    In: Geology, Geological Society of America, Vol. 31, No. 5 ( 2003), p. 455-
    Type of Medium: Online Resource
    ISSN: 0091-7613
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2003
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2007
    In:  Bulletin of the Seismological Society of America Vol. 97, No. 1A ( 2007-01-01), p. S249-S270
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 97, No. 1A ( 2007-01-01), p. S249-S270
    Abstract: Results from different tsunami forecasting and hazard assessment models are compared with observed tsunami wave heights from the 26 December 2004 Indian Ocean tsunami. Forecast models are based on initial earthquake information and are used to estimate tsunami wave heights during propagation. An empirical forecast relationship based only on seismic moment provides a close estimate to the observed mean regional and maximum local tsunami runup heights for the 2004 Indian Ocean tsunami but underestimates mean regional tsunami heights at azimuths in line with the tsunami beaming pattern (e.g., Sri Lanka, Thailand). Standard forecast models developed from subfault discretization of earthquake rupture, in which deep- ocean sea level observations are used to constrain slip, are also tested. Forecast models of this type use tsunami time-series measurements at points in the deep ocean. As a proxy for the 2004 Indian Ocean tsunami, a transect of deep-ocean tsunami amplitudes recorded by satellite altimetry is used to constrain slip along four subfaults of the M & gt;9 Sumatra–Andaman earthquake. This proxy model performs well in comparison to observed tsunami wave heights, travel times, and inundation patterns at Banda Aceh. Hypothetical tsunami hazard assessments models based on end- member estimates for average slip and rupture length (Mw 9.0–9.3) are compared with tsunami observations. Using average slip (low end member) and rupture length (high end member) (Mw 9.14) consistent with many seismic, geodetic, and tsunami inversions adequately estimates tsunami runup in most regions, except the extreme runup in the western Aceh province. The high slip that occurred in the southern part of the rupture zone linked to runup in this location is a larger fluctuation than expected from standard stochastic slip models. In addition, excess moment release (∼9%) deduced from geodetic studies in comparison to seismic moment estimates may generate additional tsunami energy, if the exponential time constant of slip is less than approximately 1 hr. Overall, there is significant variation in assessed runup heights caused by quantifiable uncertainty in both first-order source parameters (e.g., rupture length, slip-length scaling) and spatiotemporal complexity of earthquake rupture.
    Type of Medium: Online Resource
    ISSN: 1943-3573 , 0037-1106
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2007
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Seismological Research Letters Vol. 91, No. 2A ( 2020-03-01), p. 631-646
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 91, No. 2A ( 2020-03-01), p. 631-646
    Abstract: The Intermountain West (IMW) region is bounded by the Sierra Nevada Mountains to the west and the Great Plains to the east. Tectonically, the region is dominated by active extension and has moderate to high seismic hazard. Both paleoseismic and historical records include M & gt;7 surface-rupturing earthquakes. The region is also the location of frequent moderate-size (M 5–6) earthquakes. In this article, we focus on the eastern IMW and its six regional seismic networks. We document recent and historical seismicity, describe the evolution of the regional networks, and clarify the rationale for sustained and improved seismic monitoring. Although absolute population is relatively low compared with other parts of the country, the IMW is experiencing rapid growth. Beyond population, there is significant seismic risk posed to major transportation and energy corridors, nuclear generation and storage facilities, dams, national laboratories, military bases, and other critical facilities. Despite the relatively high seismic hazard and increasing risk, seismic monitoring varies from excellent to skeletal, with some seismically active regions having minimal seismographic coverage. Clear monitoring needs for the IMW include increased station density, replacement of outdated seismic equipment, and more stable funding.
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2018
    In:  Seismological Research Letters Vol. 89, No. 5 ( 2018-09), p. 1916-1922
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 89, No. 5 ( 2018-09), p. 1916-1922
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2018
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2001
    In:  Geophysical Research Letters Vol. 28, No. 7 ( 2001-04), p. 1315-1318
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 28, No. 7 ( 2001-04), p. 1315-1318
    Abstract: Estimates of the initial size of tsunamis generated by subduction zone earthquakes are significantly affected by the choice of shear modulus at shallow depths. Analysis of over 360 circum‐Pacific subduction zone earthquakes indicates that for a given seismic moment, source duration increases significantly with decreasing depth (Bilek and Lay, 1998; 1999). Under the assumption that stress drop is constant, the increase of source duration is explained by a 5‐fold reduction of shear modulus from depths of 20 km to 5 km. This much lower value of shear modulus at shallow depths in comparison to standard earth models has the effect of increasing the amount of slip estimated from seismic moment determinations, thereby increasing tsunami amplitude. The effect of using depth dependent shear modulus values is tested by modeling the tsunami from the 1992 Nicaraguan tsunami earthquake using a previously determined moment distribution (Ihmlé, 1996a). We find that the tide gauge record of this tsunami is well matched by synthetics created using the depth dependent shear modulus and moment distribution. Because excitation of seismic waves also depends on elastic heterogeneity, it is important, particularly for the inversion of short period waves, that a consistent seismic/tsunami shear modulus model be used for calculating slip distributions.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2001
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 2020
    In:  Seismological Research Letters Vol. 91, No. 1 ( 2020-01-01), p. 287-303
    In: Seismological Research Letters, Seismological Society of America (SSA), Vol. 91, No. 1 ( 2020-01-01), p. 287-303
    Abstract: The advent of low‐cost continuously recording cable‐free autonomous seismographs, commonly referred to as nodes, enables dense spatiotemporal sampling of seismic wavefields. We create virtual source reflection profiles using P waves from five teleseismic events recorded by the Sevilleta node array experiment in the southern Albuquerque basin. The basin geology records a structurally complex history, including multiple Phanerozoic orogenies, Rio Grande rift extension, and ongoing uplift from a midcrustal magma body. The Sevilleta experiment densified the long term, regionally sparse seismograph network with 801 single channel vertical‐component 10 Hz geophone nodes deployed at ∼300  m spacing for 14 days in February 2015. Results show sediment‐basement reflections at & lt;5  km depth and numerous sub‐basin structures. Comparisons to legacy crustal‐scale reflection images from the Consortium for Continental Reflection Profiling show agreement with structural geometries in the rift basin and upper crust. Comparisons of the teleseismic virtual reflection profiles to synthetic tests using 2D finite‐difference elastic wave propagation show strong P‐to‐Rayleigh scattering from steep basin edges. These high‐amplitude conversions dominate the record sections near the western rift margin and originate at the Loma Pelada fault, which acts as the primary contact between rift‐bounding basement‐cored fault blocks and rift basin sediments. At near offsets, these signals may interfere with interpretation of upper crustal structure, but their relatively slow moveout compared to teleseismic P‐wave multiples provides clear temporal separation from sediment‐basement reflections across most of the array. The high‐signal‐to‐noise ratio of these converted Rayleigh‐wave signals suggests that they may be useful for constraining short‐period (∼1  Hz) dispersion with strong sensitivity in the uppermost ∼1  km of the rift basin sediments.
    Type of Medium: Online Resource
    ISSN: 0895-0695 , 1938-2057
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 2020
    detail.hit.zdb_id: 2403376-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2006
    In:  Earth, Planets and Space Vol. 58, No. 2 ( 2006-02), p. 185-193
    In: Earth, Planets and Space, Springer Science and Business Media LLC, Vol. 58, No. 2 ( 2006-02), p. 185-193
    Abstract: Source parameters affecting tsunami generation and propagation for the M w 〉 9.0 December 26, 2004 and the M w = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source representations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.
    Type of Medium: Online Resource
    ISSN: 1880-5981
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2006
    detail.hit.zdb_id: 2087663-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2005
    In:  Earth and Planetary Science Letters Vol. 230, No. 1-2 ( 2005-01), p. 97-112
    In: Earth and Planetary Science Letters, Elsevier BV, Vol. 230, No. 1-2 ( 2005-01), p. 97-112
    Type of Medium: Online Resource
    ISSN: 0012-821X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2005
    detail.hit.zdb_id: 300203-2
    detail.hit.zdb_id: 1466659-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...