GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2016-01-21)
    Abstract: Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 26, No. 1 ( 2020-01), p. 119-188
    Abstract: Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 6, No. 6 ( 2017-11-06)
    Abstract: Plasminogen activator inhibitor type 1 ( PAI ‐1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI ‐1 levels are associated with increased risk of coronary heart disease ( CHD ). However, it is unclear whether the association reflects a causal influence of PAI ‐1 on CHD risk. Methods and Results To evaluate the association between PAI ‐1 and CHD , we applied a 3‐step strategy. First, we investigated the observational association between PAI ‐1 and CHD incidence using a systematic review based on a literature search for PAI ‐1 and CHD studies. Second, we explored the causal association between PAI ‐1 and CHD using a Mendelian randomization approach using summary statistics from large genome‐wide association studies. Finally, we explored the causal effect of PAI ‐1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta‐analysis, the highest quantile of blood PAI ‐1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age‐ and sex‐adjusted model. The effect size was reduced in studies using a multivariable‐adjusted model (odds ratio=1.46; 95% CI : 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI ‐1 level on CHD risk (odds ratio=1.22 per unit increase of log‐transformed PAI ‐1; 95% CI : 1.01, 1.47). In addition, we also detected a causal effect of PAI ‐1 on elevating blood glucose and high‐density lipoprotein cholesterol. Conclusions Our study indicates a causal effect of elevated PAI ‐1 level on CHD risk, which may be mediated by glucose dysfunction.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: JAMA Cardiology, American Medical Association (AMA), Vol. 6, No. 12 ( 2021-12-01), p. 1440-
    Type of Medium: Online Resource
    ISSN: 2380-6583
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biological Psychiatry Global Open Science, Elsevier BV, Vol. 2, No. 2 ( 2022-04), p. 115-126
    Type of Medium: Online Resource
    ISSN: 2667-1743
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 3094992-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The American Journal of Human Genetics, Elsevier BV, Vol. 91, No. 5 ( 2012-11), p. 823-838
    Type of Medium: Online Resource
    ISSN: 0002-9297
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 1473813-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 610, No. 7933 ( 2022-10-27), p. 704-712
    Abstract: Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes 1 . Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel 2 ) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: PLoS ONE, Public Library of Science (PLoS), Vol. 5, No. 6 ( 2010-6-17), p. e11148-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2010
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 105, No. 23 ( 2002-06-11), p. 2730-2736
    Abstract: Background — The platelet glycoprotein IIb/IIIa receptor inhibitor abciximab, a monoclonal antibody, has been shown to improve early and late outcomes among diabetic patients undergoing percutaneous coronary intervention (PCI). It is unknown whether small-molecule agents confer similar benefits. Methods and Results — In 18 countries, 4809 patients undergoing PCI with stent implantation were randomized to tirofiban or abciximab. At the time of enrollment, patients were stratified according to diabetes status. As compared with non-diabetic patients, patients with diabetes (n=1117) showed similar 30-day ischemic outcomes, an increased incidence of any target vessel revascularization (TVR) at 6 months (10.3% versus 7.8%; P = 0.008), and a trend toward higher 1-year mortality (2.5% versus 1.6%; P =0.056). Among diabetic patients randomized to tirofiban (n=560), the incidence of death, myocardial infarction (MI), or urgent TVR at 30 days was 6.2%, and among those randomized to abciximab (n=557) it was 5.4% (hazard ratio [HR] 1.16; P =0.540). At 6 months, the composite of death, MI, or any TVR occurred in 15.7% and in 16.9% of tirofiban and abciximab patients, respectively (HR 0.93; P =0.610). Any TVR occurred in 9.5% and 11.1%, respectively (HR 0.84; P = 0.366). The 1-year mortality was 2.1% in the tirofiban group and 2.9% in the abciximab group (HR 0.74; P = 0.436). Conclusions — Among diabetic patients undergoing PCI, tirofiban and abciximab were associated with comparable event rates, including similar rates of 6-month TVR and 1-year mortality. These findings suggest that the non-glycoprotein IIb/IIIa properties of abciximab do not translate into a discernible long-term clinical benefit among diabetic patients.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2002
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...