GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 806-806
    Abstract: Background: COVID-19 causes significant morbidity and mortality, albeit with considerable heterogeneity among affected individuals. It remains unclear which host factors determine disease severity and survival. Given the propensity of clonal hematopoiesis (CH) to promote inflammation in healthy individuals, we investigated its effect on COVID-19 outcomes. Methods: We performed a multi-omics interrogation of the genome, epigenome, transcriptome, and proteome of peripheral blood mononuclear cells from COVID-19 patients (n=227). We obtained clinical data, laboratory studies, and survival outcomes. We determined CH status and TET2-related DNA methylation. We performed single-cell proteogenomics to understand clonal composition in relation to cell phenotype. We interrogated single-cell gene expression in isolation and in conjunction with DNA accessibility. We integrated these multi-omics data to understand the effect of CH on clonal composition, gene expression, methylation of cis-regulatory elements, and lineage commitment in COVID-19 patients. We performed shRNA knockdowns to validate the effect of one candidate transcription factor in myeloid cell lines. Results: The presence of CH was strongly associated with COVID-19 severity and all-cause mortality, independent of age (HR 3.48, 95% CI 1.45-8.36, p=0.005). Differential methylation of promoters and enhancers was prevalent in TET2-mutant, but not DNMT3A-mutant CH. TET2-mutant CH was associated with enhanced classical/intermediate monocytosis and single-cell proteogenomics confirmed an enrichment of TET2 mutations in these cell types. We identified cell-type specific gene expression changes associated with TET2 mutations in 102,072 single cells (n=34). Single-cell RNA-seq confirmed the skewing of hematopoiesis towards classical and intermediate monocytes and demonstrated the downregulation of EGR1 (a transcription factor important for monocyte differentiation) along with up-regulation of the lncRNA MALAT1 in monocytes. Combined scRNA-/scATAC-seq in 43,160 single cells (n=18) confirmed the skewing of hematopoiesis and up-regulation of MALAT1 in monocytes along with decreased accessibility of EGR1 motifs in known cis-regulatory elements. Using myeloid cell lines for functional validation, shRNA knockdowns of EGR1 confirmed the up-regulation of MALAT1 (in comparison to wildtype controls). Conclusions: CH is an independent prognostic factor in COVID-19 and skews hematopoiesis towards monocytosis. TET2-mutant CH is characterized by differential methylation and accessibility of enhancers binding myeloid transcriptions factors including EGR1. The ensuing loss of EGR1 expression in monocytes causes MALAT1 overexpression, a factor known to promote monocyte differentiation and inflammation. These data provide a mechanistic insight to the adverse prognostic impact of CH in COVID-19. Citation Format: Moritz Binder, Terra L. Lasho, Wazim Mohammed Ismail, Nana A. Ben-Crentsil, Jenna A. Fernandez, Minsuk Kim, Susan M. Geyer, Amelia Mazzone, Christy M. Finke, Abhishek A. Mangaonkar, Jeong-Heon Lee, Kwan Hyun Kim, Vernadette A. Simon, Fariborz Rakhshan Rohakthar, Amik Munankarmy, Susan M. Schwager, Jonathan J. Harrington, Melissa R. Snyder, Nathalie M. Droin, Eric Solary, Keith D. Robertson, Eric D. Wieben, Eric Padron, Nicholas Chia, Alexandre Gaspar-Maia, Mrinal M. Patnaik. Enhancer deregulation inTET2-mutant clonal hematopoiesis is associated with increased COVID-19 severity and mortality [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 806.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 3, No. 6 ( 2022-11-02), p. 536-553
    Abstract: Myeloblast expansion is a hallmark of disease progression and comprises CD34+ hematopoietic stem and progenitor cells (HSPC). How this compartment evolves during disease progression in chronic myeloid neoplasms is unknown. Using single-cell RNA sequencing and high-parameter flow cytometry, we show that chronic myelomonocytic leukemia (CMML) CD34+ HSPC can be classified into three differentiation trajectories: monocytic, megakaryocyte-erythroid progenitor (MEP), and normal-like. Hallmarks of monocytic-biased trajectory were enrichment of CD120b+ inflammatory granulocyte–macrophage progenitor (GMP)-like cells, activated cytokine receptor signaling, phenotypic hematopoietic stem cell (HSC) depletion, and adverse outcomes. Cytokine receptor diversity was generally an adverse feature and elevated in CD120b+ GMPs. Hypomethylating agents decreased monocytic-biased cells in CMML patients. Given the enrichment of RAS pathway mutations in monocytic-biased cells, NRAS-competitive transplants and LPS-treated xenograft models recapitulated monocytic-biased CMML, suggesting that hematopoietic stress precipitates the monocytic-biased state. Deconvolution of HSPC compartments in other myeloid neoplasms and identifying therapeutic strategies to mitigate the monocytic-biased differentiation trajectory should be explored. Significance: Our findings establish that multiple differentiation states underlie CMML disease progression. These states are negatively augmented by inflammation and positively affected by hypomethylating agents. Furthermore, we identify HSC depletion and expansion of GMP-like cells with increased cytokine receptor diversity as a feature of myeloblast expansion in inflammatory chronic myeloid neoplasms. This article is highlighted in the In This Issue feature, p. 476
    Type of Medium: Online Resource
    ISSN: 2643-3230 , 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1692-1692
    Abstract: Improvements in antisense technology have now enabled clinically relevant therapeutic credentialing of the noncoding genome. MALAT1 is a long non-coding RNA that, among other functions, is thought to serve as a nuclear scaffold for splicing and transcription factors. MALAT1 expression is associated with inferior prognosis across solid tumors and its depletion impairs proliferation and metastasis in preclinical solid tumor models. We found that elevated MALAT1 levels are independently associated with inferior overall survival in patients with CMML. Further, RNA-sequencing of primary CMML monocytes identified MALAT1 as the fourth most over-expressed transcript compared to controls. Therefore, we explored the biologic relevance and therapeutic candidacy of MALAT1 across several human and murine models of CMML. First, we crossed NRASQ61R/+Mx1-cre driven mice, which display a CMML-like phenotype, to MALAT1KO/KOmice. Although MALAT1KO/KOmice did not have abnormalities in complete blood counts, immunophenotyping of the hematopoietic stem cell (HSC) compartment identified statistically significantly lower numbers of HSC compared to wild type (WT) controls and a non-significant decrease in NRASQ61R/+/MALAT1KO/KOcompared to NRASQ61R/+alone. This decrease in HSC was not a result of impaired self-renewal as no differences were observed in these models after in vivo competitive transplant experiments. Therefore, we reasoned that MALAT1 expression may be controlling HSC differentiation. To test this, we transformed bone marrow cells from these models with an estrogen-regulated (ER) Hoxb8 construct enabling cells to maintain an HSC state until ER is withdrawn and myeloid differentiation is induced. ER-Hoxb8NRASQ61R/+/MALAT1KO/KOcells had increased basal levels of Gr-1 compared to ER-Hoxb8 transformed NRASQ61R/+alone that was dramatically enhanced upon ER withdrawal suggesting that MALAT1 depletion regulates myeloid differentiation. These findings were validated by assessment of morphology, transcriptome, and in vivo immunophenotyping of bone marrow and spleen cells. Further, moribund NRASQ61R/+/MALAT1KO/KOmice displayed a reduction in organomegaly typically associated with leukemic burden. We validated this in human monocytic leukemia by generating MALAT1 depleted THP-1 isogeneic cell lines using the CRISPR/Cas9 system. MALAT1 depleted THP-1 cells (MKO) had greater terminal differentiation according to immunophenotypic markers and morphology that was greatly enhanced when treated with phorbol myristate acetate. Last, MKO orthotopic xenografts demonstrated inferior human leukemia engraftment and decreased spleen and liver weights, and heterotopic xenografts exhibited reduced tumor volume, collectively suggesting diminished leukemic burden. Because ATRA has been clinically tested in CMML with minimal effects, we next explored whether MALAT1 depletion could potentiate ATRA differentiation in CMML. First, we treated MKO cells with ATRA and observed a large induction of myeloid differentiation by marker expression and morphologic assessment compared to isogenic controls. This was validated by NRASQ61R/+/MALAT1KO/KOmice demonstrating that ATRA more robustly induced differentiation compared to vehicle which was not seen in NRASQ61R/+/MALAT1+/+mice. Next, we tested MALAT1 antisense oligonucleotides (ASOs) currently under clinical development in THP-1 cells +/- ATRA and demonstrated both an increase in myeloid differentiation and apoptosis compared to ATRA alone. To test this therapeutic strategy in primary CMML specimens, we generated CMML patient-derived xenografts (n=30 mice) and treated each with ASO, ATRA, the combination, or controls and identified a more robust reduction in human HSC engraftment with the combination. To explore the mechanistic basis for these findings, we performed RNA-sequencing of MALAT1-depleted or control cells and identified that CREB target genes were differentially expressed. Basal protein levels of p-CREB were also decreased in MKO cells and were further reduced in the nucleus of MKO by western and microscopy. Lastly, overexpression of WT or constitutively active CREB but not its dominant negative rescued the differentiation effect seen in ATRA treated MKO cells. Taken together, MALAT1 is a novel, CREB-dependent regulator of myeloid differentiation and its depletion potentiates ATRA therapy. Disclosures Cluzeau: Menarini: Consultancy; Jazz Pharma: Consultancy; Abbvie: Consultancy. Komrokji:celgene: Consultancy; pfizer: Consultancy; DSI: Consultancy; JAZZ: Speakers Bureau; Novartis: Speakers Bureau; JAZZ: Consultancy; Agios: Consultancy; Incyte: Consultancy. MacLeod:Ionis Pharmaceuticals: Employment. List:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Epling-Burnette:Forma Therapeutics: Research Funding; Celgene Corporation: Patents & Royalties, Research Funding; Incyte Corporation: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...