GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Cryosphere, Copernicus GmbH, Vol. 7, No. 1 ( 2013-02-28), p. 375-393
    Abstract: Abstract. We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Cryosphere, Copernicus GmbH, Vol. 10, No. 1 ( 2016-02-03), p. 271-285
    Abstract: Abstract. This study presents a high-resolution (∼  5.5 km) estimate of surface mass balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP), generated by the regional atmospheric climate model RACMO2.3 and a firn densification model (FDM). RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in situ SMB observations and discharge rates from six glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes, complicating a full model evaluation. The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr−1 in the western AP (WAP) and below 500 mm we yr−1 in the eastern AP (EAP), not resolved by coarser data sets such as ERA-Interim. The average AP ice-sheet-integrated SMB, including ice shelves (an area of 4.1  ×  105 km2), is estimated at 351 Gt yr−1 with an interannual variability of 58 Gt yr−1, which is dominated by precipitation (PR) (365 ± 57 Gt yr−1). The WAP (2.4  ×  105 km2) SMB (276 ± 47 Gt yr−1), where PR is large (276 ± 47 Gt yr−1), dominates over the EAP (1.7  ×  105 km2) SMB (75 ± 11 Gt yr−1) and PR (84 ± 11 Gt yr−1). Total sublimation is 11 ± 2 Gt yr−1 and meltwater runoff into the ocean is 4 ± 4 Gt yr−1. There are no significant trends in any of the modelled AP SMB components, except for snowmelt that shows a significant decrease over the last 36 years (−0.36 Gt yr−2).
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2013
    In:  Journal of Geophysical Research: Earth Surface Vol. 118, No. 1 ( 2013-03), p. 315-330
    In: Journal of Geophysical Research: Earth Surface, American Geophysical Union (AGU), Vol. 118, No. 1 ( 2013-03), p. 315-330
    Type of Medium: Online Resource
    ISSN: 2169-9003
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2013
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2138320-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Hydrological Processes, Wiley, Vol. 28, No. 1 ( 2014-01), p. 134-149
    Abstract: Improvements in our ability to model runoff from glaciers remain an important scientific goal. This paper describes a new temperature‐radiation‐index glacier melt model specifically enhanced for use in High‐Arctic environments, utilising high temporal and spatial resolution datasets while retaining relatively modest data requirements. The model employs several physically constrained parameters and was tuned using a lidar‐derived surface elevation model of Midtre Lovénbreen, meteorological data from sites spanning ~70% of the glacier's area‐altitude distribution and periodic ablation surveys during the 2005 melt season. The model explained 80% of the variance in observed ablation across the glacier, an improvement of ~40% on a simplified energy balance model (EBM), yet equivalent to the performance of a full EBM employed at the same location. Model performance was assessed further by comparing potential and measured runoff from the catchment and through application to an earlier (2004) melt season. The additive model form and consideration of a priori parameters for the Arctic locality were shown to be beneficial, with a planimetry correction eliminating systematic errors in potential runoff. Further parameterisations defining modelled incident radiation failed to yield significant improvements to model output. Our results suggest that such enhanced melt models may perform well for singular melt seasons, yet are highly sensitive to the choice of lapse rates, and their transferability to different locations and seasons may be limited. While modelling ablation requires detailed consideration of the transition between snow and ice melt, our study suggests that description of the ratio between radiative and turbulent heat fluxes may provide a useful step towards dynamic parameterisation of melt factors in temperature‐index models. Copyright © 2012 John Wiley & Sons, Ltd.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Copernicus GmbH ; 2012
    In:  The Cryosphere Vol. 6, No. 6 ( 2012-11-20), p. 1369-1381
    In: The Cryosphere, Copernicus GmbH, Vol. 6, No. 6 ( 2012-11-20), p. 1369-1381
    Abstract: Abstract. Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradients.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2012
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2010
    In:  Geophysical Research Letters Vol. 37, No. 7 ( 2010-04), p. n/a-n/a
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 37, No. 7 ( 2010-04), p. n/a-n/a
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2010
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2007
    In:  Geophysical Research Letters Vol. 34, No. 18 ( 2007-09-21)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 34, No. 18 ( 2007-09-21)
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2007
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2015
    In:  Journal of Geophysical Research: Earth Surface Vol. 120, No. 11 ( 2015-11), p. 2374-2392
    In: Journal of Geophysical Research: Earth Surface, American Geophysical Union (AGU), Vol. 120, No. 11 ( 2015-11), p. 2374-2392
    Abstract: Ice shelf collapse timing is estimated using GCM temperature fields Grounding line retreat is estimated using a new statistical parameterization This provides scenario‐based ice dynamical sea level rise projections
    Type of Medium: Online Resource
    ISSN: 2169-9003 , 2169-9011
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2138320-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2012
    In:  Earth System Science Data Vol. 4, No. 1 ( 2012-10-18), p. 129-142
    In: Earth System Science Data, Copernicus GmbH, Vol. 4, No. 1 ( 2012-10-18), p. 129-142
    Abstract: Abstract. A high resolution surface topography Digital Elevation Model (DEM) is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S), based on ASTER Global Digital Elevation Model (GDEM) data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA) imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE) from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM), and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (doi:10.5060/D47P8W9D).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2012
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Physical Review D, American Physical Society (APS), Vol. 99, No. 5 ( 2019-3-27)
    Type of Medium: Online Resource
    ISSN: 2470-0010 , 2470-0029
    Language: English
    Publisher: American Physical Society (APS)
    Publication Date: 2019
    detail.hit.zdb_id: 2844732-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...