GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2022-09-16)
    Abstract: Eukarya dominate the coarse primary biological aerosol (PBA) above the Amazon rainforest canopy, but their vertical profile and seasonality is currently unknown. In this study, the stratification of coarse and giant PBA 〉 5 µm were analyzed from the canopy to 300 m height at the Amazon Tall Tower Observatory in Brazil during the wet and dry seasons. We show that 〉 2/3 of the coarse PBA were canopy debris, fungal spores commonly found on decaying matter were second most abundant (ranging from 15 to 41%), followed by pollens (up to 5%). The atmospheric roughness layer right above the canopy had the greatest giant PBA abundance. Measurements over 5 years showed an increased abundance of PBA during a low-rainfall period. Giant particles, such as pollen, are reduced at 300 m, suggesting their limited dispersal. These results give insights into the giant PBA emissions of this tropical rainforest, and present a major step in understanding the type of emitted particles and their vertical distribution.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 1 ( 2020-01-15), p. 153-164
    Abstract: Abstract. Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. In the Amazon Basin, primary biological aerosol particles (PBAPs) account for a large fraction of coarse particulate matter, and fungal spores are among the most abundant PBAPs in this area as well as in other vegetated continental regions. Furthermore, PBAPs could also be important ice nuclei in Amazonia. Measurement data on the release of fungal spores under natural conditions, however, are sparse. Here we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions. For measurements under natural conditions, the samples were kept in their natural environment and a setup was developed to estimate the spore release numbers and sizes as well as the microclimatic factors temperature and air humidity in parallel to the mesoclimatic parameters net radiation, rain, and fog occurrence. For experiments in the laboratory, we developed a cuvette to assess the particle size and number of newly released fungal spores under controlled conditions, simultaneously measuring temperature and relative humidity inside the cuvette. Both approaches were combined with bioaerosol sampling techniques to characterize the released particles using microscopic methods. For fruiting bodies of the basidiomycetous species, Rigidoporus microporus, the model species for which these techniques were tested, the highest frequency of spore release occurred in the range from 62 % to 96 % relative humidity. The results obtained for this model species reveal characteristic spore release patterns linked to environmental or experimental conditions, indicating that the moisture status of the sample may be a regulating factor, whereas temperature and light seem to play a minor role for this species. The presented approach enables systematic studies aimed at the quantification and validation of spore emission rates and inventories, which can be applied to a regional mapping of cryptogamic organisms under given environmental conditions.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-01-04)
    Abstract: A large amount of dust from the Sahara reaches the Amazon Basin, as observed with satellite imagery. This dust is thought to carry micronutrients that could help fertilize the rainforest. However, considering different atmospheric transport conditions, different aridity levels in South America and Africa and active volcanism, it is not clear if the same pathways for dust have occurred throughout the Holocene. Here we present analyses of Sr-Nd isotopic ratios of a lacustrine sediment core from remote Lake Pata in the Amazon region that encompasses the past 7,500 years before present, and compare these ratios to dust signatures from a variety of sources. We find that dust reaching the western Amazon region during the study period had diverse origins, including the Andean region and northern and southern Africa. We suggest that the Sahara Desert was not the dominant source of dust throughout the vast Amazon basin over the past 7,500 years.
    Type of Medium: Online Resource
    ISSN: 2662-4435
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3037243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biogeosciences, Copernicus GmbH, Vol. 17, No. 21 ( 2020-11-11), p. 5399-5416
    Abstract: Abstract. In the Amazonian rain forest, major parts of trees and shrubs are covered by epiphytic cryptogams of great taxonomic variety, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown. As cryptogams are poikilohydric organisms, they are physiologically active only under moist conditions. Thus, information on their water content (WC) as well as temperature and light conditions experienced by them are essential to analyze their impact on local, regional, and even global biogeochemical processes. In this study, we present data on the microclimatic conditions, including water content, temperature, and light conditions experienced by epiphytic bryophytes along a vertical gradient, and combine these with above-canopy climate data collected at the Amazon Tall Tower Observatory (ATTO) in the Amazonian rain forest between October 2014 and December 2016. While the monthly average of above-canopy light intensities revealed only minor fluctuations over the course of the year, the light intensities experienced by the bryophytes varied depending on the location within the canopy, probably caused by individual shading by vegetation. In the understory (1.5 m), monthly average light intensities were similar throughout the year, and individual values were extremely low, remaining below 3 µmol m−2 s−1 photosynthetic photon flux density more than 84 % of the time. Temperatures showed only minor variations throughout the year, with higher values and larger height-dependent differences during the dry season. The indirectly assessed water content of bryophytes varied depending on precipitation, air humidity, dew condensation, and bryophyte type. Whereas bryophytes in the canopy were affected by diel fluctuations of the relative humidity and condensation, those close to the forest floor mainly responded to rainfall patterns. In general, bryophytes growing close to the forest floor were limited by light availability, while those growing in the canopy had to withstand larger variations in microclimatic conditions, especially during the dry season. For further research in this field, these data may be combined with CO2 gas exchange measurements to investigate the role of bryophytes in various biosphere–atmosphere exchange processes, and could be a tool to understand the functioning of the epiphytic community in greater detail.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 19, No. 2 ( 2019-01-31), p. 1221-1240
    Abstract: Abstract. In this study, aerosol samples collected at a remote site in the Amazonian rainforest and an urban site in Manaus, Brazil, were investigated on a single-particle basis using a quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA). A total of 23 aerosol samples were collected in four size ranges (0.25–0.5, 0.5–1.0, 1.0–2.0, and 2.0–4.0 µm) during the wet season in 2012 at two Amazon basin sites: 10 samples in Manaus, an urban area; and 13 samples at an 80 m high tower, located at the Amazon Tall Tower Observatory (ATTO) site in the middle of the rainforest, 150 km northeast of Manaus. The aerosol particles were classified into nine particle types based on the morphology on the secondary electron images (SEIs) together with the elemental concentrations of 3162 individual particles: (i) secondary organic aerosols (SOA); (ii) ammonium sulfate (AS); (iii) SOA and AS mixtures; (iv) aged mineral dust; (v) reacted sea salts; (vi) primary biological aerosol (PBA); (vii) carbon-rich or elemental carbon (EC) particles, such as soot, tarball, and char; (viii) fly ash; and (ix) heavy metal (HM, such as Fe, Zn, Ni, and Ti)-containing particles. In submicron aerosols collected at the ATTO site, SOA and AS mixture particles were predominant (50 %–94 % in relative abundance) with SOA and ammonium sulfate comprising 73 %–100 %. In supermicron aerosols at the ATTO site, aged mineral dust and sea salts (37 %–70 %) as well as SOA and ammonium sulfate (28 %–58 %) were abundant. PBAs were observed abundantly in the PM2−4 fraction (46 %), and EC and fly ash particles were absent in all size fractions. The analysis of a bulk PM0.25−0.5 aerosol sample from the ATTO site using Raman microspectrometry and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) showed that ammonium sulfate, organics, and minerals are the major chemical species, which is consistent with the ED-EPMA results. In the submicron aerosols collected in Manaus, either SOA and ammonium sulfate (17 %–80 %) or EC particles (6 %–78 %) were dominant depending on the samples. In contrast, aged mineral dust, reacted sea salt, PBA, SOA, ammonium sulfate, and EC particles comprised most of the supermicron aerosols collected in Manaus. The SOA, ammonium sulfate, and PBAs were mostly of a biogenic origin from the rainforest, whereas the EC and HM-containing particles were of an anthropogenic origin. Based on the different contents of SOA, ammonium sulfate, and EC particles among the samples collected in Manaus, a considerable influence of the rainforest over the city was observed. Aged mineral dust and reacted sea-salt particles, including mineral dust mixed with sea salts probably during long-range transatlantic transport, were abundant in the supermicron fractions at both sites. Among the aged mineral dust and reacted sea-salt particles, sulfate-containing ones outnumbered those containing nitrates and sulfate + nitrate in the ATTO samples. In contrast, particles containing sulfate + nitrate were comparable in number to particles containing sulfate only in the Manaus samples, indicating the different sources and formation mechanisms of secondary aerosols, i.e., the predominant presence of sulfate at the ATTO site from mostly biogenic emissions and the elevated influences of nitrates from anthropogenic activities at the Manaus site.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 18 ( 2016-09-23), p. 11899-11913
    Abstract: Abstract. The Amazon Basin plays key role in atmospheric chemistry, biodiversity and climate change. In this study we applied nanoelectrospray (nanoESI) ultra-high-resolution mass spectrometry (UHRMS) for the analysis of the organic fraction of PM2.5 aerosol samples collected during dry and wet seasons at a site in central Amazonia receiving background air masses, biomass burning and urban pollution. Comprehensive mass spectral data evaluation methods (e.g. Kendrick mass defect, Van Krevelen diagrams, carbon oxidation state and aromaticity equivalent) were used to identify compound classes and mass distributions of the detected species. Nitrogen- and/or sulfur-containing organic species contributed up to 60 % of the total identified number of formulae. A large number of molecular formulae in organic aerosol (OA) were attributed to later-generation nitrogen- and sulfur-containing oxidation products, suggesting that OA composition is affected by biomass burning and other, potentially anthropogenic, sources. Isoprene-derived organosulfate (IEPOX-OS) was found to be the most dominant ion in most of the analysed samples and strongly followed the concentration trends of the gas-phase anthropogenic tracers confirming its mixed anthropogenic–biogenic origin. The presence of oxidised aromatic and nitro-aromatic compounds in the samples suggested a strong influence from biomass burning especially during the dry period. Aerosol samples from the dry period and under enhanced biomass burning conditions contained a large number of molecules with high carbon oxidation state and an increased number of aromatic compounds compared to that from the wet period. The results of this work demonstrate that the studied site is influenced not only by biogenic emissions from the forest but also by biomass burning and potentially other anthropogenic emissions from the neighbouring urban environments.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 4 ( 2017-02-22), p. 2673-2687
    Abstract: Abstract. The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m−3), Fe(II) (16 ng m−3), Na (470 ng m−3), Ca (194 ng m−3), K (65 ng m−3), and Mg (89 ng m−3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the main source of soluble mineral nutrients.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 10 ( 2022-9-2)
    Abstract: Biological particles suspended in the atmosphere have a crucial role in the dynamics of the biosphere underneath. Although much attention is paid for the chemical and physical properties of these particles, their biological taxonomic identity, which is relevant for ecological research, remains little studied. We took air samples at 300 meters above the forest in central Amazonia, in seven periods of 7 days, and used high-throughput DNA sequencing techniques to taxonomically identify airborne fungal and plant material. The use of a molecular identification technique improved taxonomic resolution when compared to morphological identification. This first appraisal of airborne diversity showed that fungal composition was strikingly different from what has been recorded in anthropogenic regions. For instance, basidiospores reached 30% of the OTUs instead of 3–5% as found in the literature; and the orders Capnodiales and Eurotiales—to which many allergenic fungi and crop pathogens belong—were much less frequently recorded than Pleosporales, Polyporales, and Agaricales. Plant OTUs corresponded mainly to Amazonian taxa frequently present in pollen records such as the genera Helicostilys and Cecropia and/or very abundant in the region such as Pourouma and Pouteria . The origin of extra-Amazonian plant material is unknown, but they belong to genera of predominantly wind-pollinated angiosperm families such as Poaceae and Betulaceae. Finally, the detection of two bryophyte genera feeds the debate about the role of long distance dispersal in the distribution of these plants.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2745634-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Communications Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 1 ( 2021-12-21)
    Abstract: Cryptogamic organisms such as bryophytes and lichens cover most surfaces within tropical forests, yet their impact on the emission of biogenic volatile organic compounds is unknown. These compounds can strongly influence atmospheric oxidant levels as well as secondary organic aerosol concentrations, and forest canopy leaves have been considered the dominant source of these emissions. Here we present cuvette flux measurements, made in the Amazon rainforest between 2016–2018, and show that common bryophytes emit large quantities of highly reactive sesquiterpenoids and that widespread lichens strongly uptake atmospheric oxidation products. A spatial upscaling approach revealed that cryptogamic organisms emit sesquiterpenoids in quantities comparable to current canopy attributed estimates, and take up atmospheric oxidation products at rates comparable to hydroxyl radical chemistry. We conclude that cryptogamic organisms play an important and hitherto overlooked role in atmospheric chemistry above and within tropical rainforests.
    Type of Medium: Online Resource
    ISSN: 2662-4435
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3037243-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science of The Total Environment, Elsevier BV, Vol. 463-464 ( 2013-10), p. 639-646
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2013
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...