GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 48, No. 10 ( 2018-10), p. 2259-2282
    Abstract: The strong stratification of the Bay of Bengal (BoB) causes rapid variations in sea surface temperature (SST) that influence the development of monsoon rainfall systems. This stratification is driven by the salinity difference between the fresh surface waters of the northern bay and the supply of warm, salty water by the Southwest Monsoon Current (SMC). Despite the influence of the SMC on monsoon dynamics, observations of this current during the monsoon are sparse. Using data from high-resolution in situ measurements along an east–west section at 8°N in the southern BoB, we calculate that the northward transport during July 2016 was between 16.7 and 24.5 Sv (1 Sv ≡ 10 6 m 3 s −1 ), although up to ⅔ of this transport is associated with persistent recirculating eddies, including the Sri Lanka Dome. Comparison with climatology suggests the SMC in early July was close to the average annual maximum strength. The NEMO 1/12° ocean model with data assimilation is found to faithfully represent the variability of the SMC and associated water masses. We show how the variability in SMC strength and position is driven by the complex interplay between local forcing (wind stress curl over the Sri Lanka Dome) and remote forcing (Kelvin and Rossby wave propagation). Thus, various modes of climatic variability will influence SMC strength and location on time scales from weeks to years. Idealized one-dimensional ocean model experiments show that subsurface water masses advected by the SMC significantly alter the evolution of SST and salinity, potentially impacting Indian monsoon rainfall.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 72, No. 10 ( 2015-10-01), p. 3755-3779
    Abstract: The diurnal variability and the environmental conditions that support the moisture resurgence of MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO campaign in October–December 2011 are investigated using in situ observations and the cloud-resolving fully air–ocean–wave Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Spectral density and wavelet analysis of the total precipitable water (TPW) constructed from the DYNAMO soundings and TRMM satellite precipitation reveal a deep layer of vapor resurgence during the observed Wheeler and Hendon real-time multivariate MJO index phases 5–8 (MJO suppressed phase), which include diurnal, quasi-2-, quasi-3–4-, quasi-6–8-, and quasi-16-day oscillations. A similar oscillatory pattern is found in the DYNAMO moorings sea surface temperature analysis, suggesting a tightly coupled atmosphere and ocean system during these periods. COAMPS hindcast focused on the 12–16 November 2011 event suggests that both the diurnal sea surface temperature (SST) pumping and horizontal and vertical moisture transport associated with the westward propagating mixed Rossby–Gravity (MRG) waves play an essential role in the moisture resurgence during this period. Idealized COAMPS simulations of MRG waves are used to estimate the MRG and diurnal SST contributions to the overall moisture increase. These idealized MRG sensitivity experiments showed the TPW increase varies from 9% to 13% with the largest changes occurring in the simulations that included a diurnal SST variation of 2.5°C as observed.
    Type of Medium: Online Resource
    ISSN: 0022-4928 , 1520-0469
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Climate Vol. 27, No. 24 ( 2014-12-15), p. 9101-9122
    In: Journal of Climate, American Meteorological Society, Vol. 27, No. 24 ( 2014-12-15), p. 9101-9122
    Abstract: A surface diurnal warm layer is diagnosed from Seaglider observations and develops on half of the days in the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the Madden–Julian Oscillation (CINDY/DYNAMO) Indian Ocean experiment. The diurnal warm layer occurs on days of high solar radiation flux ( & gt;80 W m−2) and low wind speed ( & lt;6 m s−1) and preferentially in the inactive stage of the Madden–Julian oscillation. Its diurnal harmonic has an exponential vertical structure with a depth scale of 4–5 m (dependent on chlorophyll concentration), consistent with forcing by absorption of solar radiation. The effective sea surface temperature (SST) anomaly due to the diurnal warm layer often reaches 0.8°C in the afternoon, with a daily mean of 0.2°C, rectifying the diurnal cycle onto longer time scales. This SST anomaly drives an anomalous flux of 4 W m−2 that cools the ocean. Alternatively, in a climate model where this process is unresolved, this represents an erroneous flux that warms the ocean. A simple model predicts a diurnal warm layer to occur on 30%–50% of days across the tropical warm pool. On the remaining days, with low solar radiation and high wind speeds, a residual diurnal cycle is observed by the Seaglider, with a diurnal harmonic of temperature that decreases linearly with depth. As wind speed increases, this already weak temperature gradient decreases further, tending toward isothermal conditions.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2016
    In:  Geophysical Research Letters Vol. 43, No. 15 ( 2016-08-16), p. 8269-8276
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 43, No. 15 ( 2016-08-16), p. 8269-8276
    Abstract: Atmospheric equatorial convectively coupled Kelvin waves (CCKWs) are phase locked to the diurnal cycle over the Maritime Continent CCKWs in phase with the diurnal cycle have a precipitation signal up to 3 times larger than other CCKWs CCKWs in phase with the diurnal cycle are 40% more likely to successfully cross the Maritime Continent than other CCKWs
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2016
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Earth System Science Data, Copernicus GmbH, Vol. 15, No. 1 ( 2023-01-31), p. 465-495
    Abstract: Abstract. In early 2020, an international team set out to investigate trade-wind cumulus clouds and their coupling to the large-scale circulation through the field campaign EUREC4A: ElUcidating the RolE of Clouds-Circulation Coupling in ClimAte. Focused on the western tropical Atlantic near Barbados, EUREC4A deployed a number of innovative observational strategies, including a large network of water isotopic measurements collectively known as EUREC4A-iso, to study the tropical shallow convective environment. The goal of the isotopic measurements was to elucidate processes that regulate the hydroclimate state – for example, by identifying moisture sources, quantifying mixing between atmospheric layers, characterizing the microphysics that influence the formation and persistence of clouds and precipitation, and providing an extra constraint in the evaluation of numerical simulations. During the field experiment, researchers deployed seven water vapor isotopic analyzers on two aircraft, on three ships, and at the Barbados Cloud Observatory (BCO). Precipitation was collected for isotopic analysis at the BCO and from aboard four ships. In addition, three ships collected seawater for isotopic analysis. All told, the in situ data span the period 5 January–22 February 2020 and cover the approximate area 6 to 16∘ N and 50 to 60∘ W, with water vapor isotope ratios measured from a few meters above sea level to the mid-free troposphere and seawater samples spanning the ocean surface to several kilometers depth. This paper describes the full EUREC4A isotopic in situ data collection – providing extensive information about sampling strategies and data uncertainties – and also guides readers to complementary remotely sensed water vapor isotope ratios. All field data have been made publicly available even if they are affected by known biases, as is the case for high-altitude aircraft measurements, one of the two BCO ground-based water vapor time series, and select rain and seawater samples from the ships. Publication of these data reflects a desire to promote dialogue around improving water isotope measurement strategies for the future. The remaining, high-quality data create unprecedented opportunities to close water isotopic budgets and evaluate water fluxes and their influence on cloudiness in the trade-wind environment. The full list of dataset DOIs and notes on data quality flags are provided in Table 3 of Sect. 5 (“Data availability”).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Atmosphere Vol. 12, No. 12 ( 2021-12-18), p. 1698-
    In: Atmosphere, MDPI AG, Vol. 12, No. 12 ( 2021-12-18), p. 1698-
    Abstract: This paper addresses the subject of inter-annual variability of the tropical precipitable water vapor (PWV) derived from 18 years of global navigation satellite system (GNSS) observations. Non-linear trends of retrieved GNSS PWV were investigated using the singular spectrum analysis (SSA) along with various climate indices. For most of the analyzed stations (~49%) the GNSS PWV anomaly was related to the El Niño Southern Oscillation (ENSO), although its influence on the PWV variability was not homogeneous. The cross-correlations coefficient values estimated between the Multivariate ENSO Index (MEI) and PWV were up to 0.78. A strong cross-correlation was also found for regional climate pattern expressed through CAR, DMI, HAW, NPGO, TNA and TSA indices. A distinct agreement was also found when instead of climate indices, the local sea surface temperature was examined (average correlation 0.60). The SSA method made it also possible to distinguish small-scale phenomena that affect PWV, such as local droughts or wetter rainy seasons. The overall nature of the investigated changes was also verified through linear trend analysis. In general, not a single station was characterized by a negative trend and its weighted mean value, calculated for all stations was equal to 0.08 ± 0.01 mm/year.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Weather Review, American Meteorological Society, Vol. 149, No. 5 ( 2021-05), p. 1381-1401
    Abstract: On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-02-15)
    Abstract: Tropical cyclone Seroja was one of the first tropical cyclones to significantly impact Indonesian land, and the strongest one in such close proximity to Timor Island. In April 2021 Seroja brought historic flooding to near-equatorial regions of Indonesia and East Timor, as well as impacting Western Australia. Here we show that the unusual near-equatorial cyclogenesis in close proximity to a land mass was due to “perfect storm” conditions associated with multiple wave interactions. Specifically, this was associated with enhanced equatorial convection on the leading edge of a Madden–Julian Oscillation (MJO) event. Within the MJO, the interaction between a convectively coupled equatorial Rossby wave and two convectively coupled Kelvin waves span up the initial vortex and accelerated cyclogenesis. On average, such favorable atmospheric conditions can occur once per year. These results indicate the potential for increased predictability of tropical cyclones over the Maritime Continent.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Earth System Science Data, Copernicus GmbH, Vol. 15, No. 4 ( 2023-04-25), p. 1801-1830
    Abstract: Abstract. The northwestern Tropical Atlantic Ocean is a turbulent region, filled with mesoscale eddies and regional currents. In this intense dynamical context, several water masses with thermohaline characteristics of different origins are advected, mixed, and stirred at the surface and at depth. The EUREC4A-OA/ATOMIC experiment that took place in January and February 2020 was dedicated to assessing the processes at play in this region, especially the interaction between the ocean and the atmosphere. For that reason, four oceanographic vessels and different autonomous platforms measured properties near the air–sea interface and acquired thousands of upper-ocean (up to 400–2000 m depth) profiles. However, each device had its own observing capability, varying from deep measurements acquired during vessel stations to shipboard underway near-surface observations and measurements from autonomous and uncrewed systems (such as Saildrones). These observations were undertaken with a specific sampling strategy guided by near-real-time satellite maps and adapted every half day, based on the process that was investigated. These processes were characterized by different spatiotemporal scales, from mesoscale eddies, with diameters exceeding 100 km, to submesoscale filaments of 1 km width. This article describes the datasets gathered from the different devices and how the data were calibrated and validated. In order to ensure an overall consistency, the platforms' datasets are cross-validated using a hierarchy of instruments defined by their own specificity and calibration procedures. This has enabled the quantification of the uncertainty in the measured parameters when different datasets are used together, e.g., https://doi.org/10.17882/92071 (L'Hégaret et al., 2020a).
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Geophysical Research: Atmospheres Vol. 124, No. 2 ( 2019-01-27), p. 747-769
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 124, No. 2 ( 2019-01-27), p. 747-769
    Abstract: GCMs are sensitive to the existence of the Maritime Continent in the Indo‐Pacific warm pool Most models underestimate daily mean precipitation and amplitude of the diurnal cycle, especially over land Most GCMs underestimate land‐sea contrast in precipitation characteristics
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...