GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Publications of the Astronomical Society of the Pacific, IOP Publishing, Vol. 135, No. 1048 ( 2023-06-01), p. 068001-
    Abstract: Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4 m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5 m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 yr, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.
    Type of Medium: Online Resource
    ISSN: 0004-6280 , 1538-3873
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 2003100-2
    detail.hit.zdb_id: 2207655-4
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 19 ( 2017-10-01), p. 5687-5695
    Abstract: Purpose: Based on promising preclinical data, we conducted a single-arm phase II trial to assess the clinical benefit rate (CBR) of neratinib, defined as complete/partial response (CR/PR) or stable disease (SD) ≥24 weeks, in HER2mut nonamplified metastatic breast cancer (MBC). Secondary endpoints included progression-free survival (PFS), toxicity, and circulating tumor DNA (ctDNA) HER2mut detection. Experimental Design: Tumor tissue positive for HER2mut was required for eligibility. Neratinib was administered 240 mg daily with prophylactic loperamide. ctDNA sequencing was performed retrospectively for 54 patients (14 positive and 40 negative for tumor HER2mut). Results: Nine of 381 tumors (2.4%) sequenced centrally harbored HER2mut (lobular 7.8% vs. ductal 1.6%; P = 0.026). Thirteen additional HER2mut cases were identified locally. Twenty-one of these 22 HER2mut cases were estrogen receptor positive. Sixteen patients [median age 58 (31–74) years and three (2–10) prior metastatic regimens] received neratinib. The CBR was 31% [90% confidence interval (CI), 13%–55%], including one CR, one PR, and three SD ≥24 weeks. Median PFS was 16 (90% CI, 8–31) weeks. Diarrhea (grade 2, 44%; grade 3, 25%) was the most common adverse event. Baseline ctDNA sequencing identified the same HER2mut in 11 of 14 tumor-positive cases (sensitivity, 79%; 90% CI, 53%–94%) and correctly assigned 32 of 32 informative negative cases (specificity, 100%; 90% CI, 91%–100%). In addition, ctDNA HER2mut variant allele frequency decreased in nine of 11 paired samples at week 4, followed by an increase upon progression. Conclusions: Neratinib is active in HER2mut, nonamplified MBC. ctDNA sequencing offers a noninvasive strategy to identify patients with HER2mut cancers for clinical trial participation. Clin Cancer Res; 23(19); 5687–95. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 381, No. 6658 ( 2023-08-11)
    Abstract: Comparative epigenomics is an emerging field that combines epigenetic signatures with phylogenetic relationships to elucidate species characteristics such as maximum life span. For this study, we generated cytosine DNA methylation (DNAm) profiles ( n = 15,456) from 348 mammalian species using a methylation array platform that targets highly conserved cytosines. RATIONALE Nature has evolved mammalian species of greatly differing life spans. To resolve the relationship of DNAm with maximum life span and phylogeny, we performed a large-scale cross-species unsupervised analysis. Comparative studies in many species enables the identification of epigenetic correlates of maximum life span and other traits. RESULTS We first tested whether DNAm levels in highly conserved cytosines captured phylogenetic relationships among species. We constructed phyloepigenetic trees that paralleled the traditional phylogeny. To avoid potential confounding by different tissue types, we generated tissue-specific phyloepigenetic trees. The high phyloepigenetic-phylogenetic congruence is due to differences in methylation levels and is not confounded by sequence conservation. We then interrogated the extent to which DNA methylation associates with specific biological traits. We used an unsupervised weighted correlation network analysis (WGCNA) to identify clusters of highly correlated CpGs (comethylation modules). WGCNA identified 55 distinct comethylation modules, of which 30 were significantly associated with traits including maximum life span, adult weight, age, sex, human mortality risk, or perturbations that modulate murine life span. Both the epigenome-wide association analysis (EWAS) and eigengene-based analysis identified methylation signatures of maximum life span, and most of these were independent of aging, presumably set at birth, and could be stable predictors of life span at any point in life. Several CpGs that are more highly methylated in long-lived species are located near HOXL subclass homeoboxes and other genes that play a role in morphogenesis and development. Some of these life span–related CpGs are located next to genes that are also implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6 ). CpGs with methylation levels that are inversely related to life span are enriched in transcriptional start site (TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes located in chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic processes. This suggests that long-living species evolved mechanisms that maintain low methylation levels in these chromatin states that would favor higher expression levels of genes essential for an organism’s survival. The upstream regulator analysis of the EWAS of life span identified the pluripotency transcription factors OCT4 , SOX2 , and NANOG. Other factors, such as POLII , CTCF , RAD21 , YY1 , and TAF1 , showed the strongest enrichment for negatively life span–related CpGs. CONCLUSION The phyloepigenetic trees indicate that divergence of DNA methylation profiles closely parallels that of genetics through evolution. Our results demonstrate that DNA methylation is subjected to evolutionary pressures and selection. The publicly available data from our Mammalian Methylation Consortium are a rich source of information for different fields such as evolutionary biology, developmental biology, and aging. DNAm network relates to mammalian phylogeny and traits. ( A ) Phyloepigenetic tree from the DNAm data generated from blood samples. ( B ) Unsupervised WGCNA networks identified 55 comethylation modules. ( C ) EWAS of log-transformed maximum life span. Each dot corresponds to the methylation levels of a highly conserved CpG. Shown is the log (base 10)–transformed P value ( y axis) versus the human genome coordinate Hg19 ( x axis). ( D ) Comethylation module correlated with maximum life span of mammals. Eigengene (first principal component of scaled CpGs in the midnightblue module) versus log (base e) transformed maximum life span. Each dot corresponds to a different species.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 49, No. 12 ( 2017-12), p. 1693-1704
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Familial Cancer Vol. 12, No. 1 ( 2013-3), p. 1-18
    In: Familial Cancer, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2013-3), p. 1-18
    Type of Medium: Online Resource
    ISSN: 1389-9600 , 1573-7292
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2015448-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 17 ( 2017-09-01), p. 5101-5111
    Abstract: Purpose: Genomic alterations in blood-derived circulating tumor DNA (ctDNA) from patients with non–small cell lung adenocarcinoma (NSCLC) were ascertained and correlated with clinical characteristics and therapeutic outcomes. Experimental Design: Comprehensive plasma ctDNA testing was performed in 88 consecutive patients; 34 also had tissue next-generation sequencing; 29, other forms of genotyping; and 25 (28.4%) had no tissue molecular tests because of inadequate tissue or biopsy contraindications. Results: Seventy-two patients (82%) had ≥1 ctDNA alteration(s); among these, 75% carried alteration(s) potentially actionable by FDA-approved (61.1%) or experimental drug(s) in clinical trials (additional 13.9%). The most frequent alterations were in the TP53 (44.3% of patients), EGFR (27.3%), MET (14.8%), KRAS (13.6%), and ALK (6.8%) genes. The concordance rate for EGFR alterations was 80.8% (100% vs. 61.5%; ≤1 vs. & gt;1 month between ctDNA and tissue tests; P = 0.04) for patients with any detectable ctDNA alterations. Twenty-five patients (28.4%) received therapy matching ≥1 ctDNA alteration(s); 72.3% (N = 16/22) of the evaluable matched patients achieved stable disease ≥6 months (SD) or partial response (PR). Five patients with ctDNA-detected EGFR T790M were subsequently treated with a third generation EGFR inhibitor; all five achieved SD ≥ 6 months/PR. Patients with ≥1 alteration with ≥5% variant allele fraction (vs. & lt; 5%) had a significantly shorter median survival (P = 0.012). Conclusions: ctDNA analysis detected alterations in the majority of patients, with potentially targetable aberrations found at expected frequencies. Therapy matched to ctDNA alterations demonstrated appreciable therapeutic efficacy, suggesting clinical utility that warrants future prospective studies. Clin Cancer Res; 23(17); 5101–11. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 24, No. 15 ( 2018-08-01), p. 3528-3538
    Abstract: Purpose: Cell-free DNA (cfDNA) sequencing provides a noninvasive method for obtaining actionable genomic information to guide personalized cancer treatment, but the presence of multiple alterations in circulation related to treatment and tumor heterogeneity complicate the interpretation of the observed variants. Experimental Design: We describe the somatic mutation landscape of 70 cancer genes from cfDNA deep-sequencing analysis of 21,807 patients with treated, late-stage cancers across & gt;50 cancer types. To facilitate interpretation of the genomic complexity of circulating tumor DNA in advanced, treated cancer patients, we developed methods to identify cfDNA copy-number driver alterations and cfDNA clonality. Results: Patterns and prevalence of cfDNA alterations in major driver genes for non–small cell lung, breast, and colorectal cancer largely recapitulated those from tumor tissue sequencing compendia (The Cancer Genome Atlas and COSMIC; r = 0.90–0.99), with the principal differences in alteration prevalence being due to patient treatment. This highly sensitive cfDNA sequencing assay revealed numerous subclonal tumor-derived alterations, expected as a result of clonal evolution, but leading to an apparent departure from mutual exclusivity in treatment-naïve tumors. Upon applying novel cfDNA clonality and copy-number driver identification methods, robust mutual exclusivity was observed among predicted truncal driver cfDNA alterations (FDR = 5 × 10−7 for EGFR and ERBB2), in effect distinguishing tumor-initiating alterations from secondary alterations. Treatment-associated resistance, including both novel alterations and parallel evolution, was common in the cfDNA cohort and was enriched in patients with targetable driver alterations ( & gt;18.6% patients). Conclusions: Together, these retrospective analyses of a large cfDNA sequencing data set reveal subclonal structures and emerging resistance in advanced solid tumors. Clin Cancer Res; 24(15); 3528–38. ©2018 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 4_Supplement ( 2021-02-15), p. PS5-02-PS5-02
    Abstract: Background: Early changes in circulating tumour DNA (ctDNA) levels may identify which patients respond to therapy earlier than imaging, with ctDNA levels falling rapidly in patients who respond to therapy. The plasmaMATCH trial assessed the utility of ctDNA testing with an error-corrected 73-gene targeted panel (Guardant360, Guardant Health) to allocate patients to four mutation matched therapy cohorts. ESR1-extended fulvestrant (A), HER2-neratinib +/- fulvestrant (B), AKT1-capivasertib + fulvestrant (C), AKT basket-capivasertib (D). Here, we report paired baseline and early on treatment ctDNA analysis from plasmaMATCH, to establish the optimal criteria for predicting progression free survival (PFS). Methods: In plasmaMATCH treatment cohorts, plasma samples were collected for ctDNA analysis pre-treatment at cycle 1-day 1 (C1D1) and cycle 2-day 1 (C2D1) timepoints, and sequenced with the Guardant 360 assay. Patients were included if they had a minimum of 14 days of treatment in the first cycle. Multiple different methods were investigated to integrate variant allele fractions (VAF) of mutations identified at each timepoint to estimate the level of ctDNA, including maximum VAF, mean VAF and weighted mean VAF, and weighted mean VAF of clonal mutations at C1D1. Variants with a VAF & lt;0.3%, set as the limit of detection, in C1D1 were excluded. Genes frequently mutated in CHIP were excluded (GNAS, JAK2, IDH1, IDH2 and ATM) from the weighted mean VAF of clonal mutations method. The circulating DNA ratio (CDR) was calculated as the ratio of C2D1 level relative to C1D1 level. The optimal cut-point for predicting PFS was assessed by fitting a range of cutpoints for each VAF integration method, identifying the cut-point with the highest Harrell’s C-index. Results: A total of 142 patients were enrolled into plasmaMATCH cohorts A-D, 79 patients had samples sent for paired C1D1-C2D1 plasma ctDNA sequencing, 1 failed sequencing and 1 insufficient treatment, and 77 (54%) patients had assessable C1D1-C2D1 plasma ctDNA sequencing results (45 cohort A, 12 cohort B, 12 cohort C, 8 cohort D). A weighted mean of clonal mutations in C1D1 ctDNA sequencing was the optimal method for integrating VAF, with peak C-Index 0.67. At the optimal C-index cutoff of 0.132, median PFS with high ctDNA CDR was 2.4 months (95% CI 2.0-3.7) and with suppressed ctDNA CDR was 9.9 months (95% CI 7.0-13.7) (HR 4.3, 95% CI 2.4-7.6, p & lt;0.0001). Early changes in ctDNA level were also predictive in cohorts A extended dose fulvestrant alone (HR 5.8, 95% CI 2.2-16, p=0.0001) and cohorts B-D of targeted therapy (HR 3.8, 95% CI 1.7-8.6, p=0.00063). In analysis that was not pre-planned, patients with undetectable ctDNA at C2D1 had a particularly good outcome (p & lt;0.0001, table 1). Conclusions: We identify an optimal methodology for assessing early dynamic changes in ctDNA that predicts treatment efficacy in patients with metastatic breast cancer. This methodology will require validation in independent data-sets, and if validated would allow trials of adapting therapy on the basis of early ctDNA dynamics. Table 1ctDNA dynamics categoryMedian PFS months (95%CI)6-month PFSORRUndetectable (N=11) CDR=018.2 (10.2-NA)91%9/11 (82%)Suppressed (N=14) CDR & lt;0.132 and & gt;05.4 (4.6-NA)48%6/14 (43%)High (N=52) CDR & gt;=0.1322.4 (2.0-3.7)8%4/52 (8%) Citation Format: Javier Pascual, Rosalind J Cutts, Belinda Kingston, Sarah Hrebien, Lucy S Kilburn, Sarah Kernaghan, Laura Moretti, Katie Wilkinson, Andrew M Wardley, Iain R Macpherson, Richard D Baird, Rebecca Roylance, Michael Hubank, Giselle Walsh, Iris Faull, Kimberly C Banks, Richard B Lanman, Isaac Garcia-Murillas, Judith M Bliss, Alistair Ring, Nicholas C Turner. Assessment of early ctDNA dynamics to predict efficacy of targeted therapies in metastatic breast cancer: Results from plasmaMATCH trial [abstract]. In: Proceedings of the 2020 San Antonio Breast Cancer Virtual Symposium; 2020 Dec 8-11; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2021;81(4 Suppl):Abstract nr PS5-02.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2018
    In:  Cancer Research Vol. 78, No. 13_Supplement ( 2018-07-01), p. 1814-1814
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 1814-1814
    Abstract: NF1 has been best known as a GAP (GTPase Activating Protein) that inactivates Ras. However, we are now finding evidence that it also functions as an ER co-repressor, whose loss leads to endocrine therapy resistance. Sequencing tumor DNA from & gt;600 ER+ breast cancers treated by tamoxifen adjuvant monotherapy, we found that frameshift (FS) and nonsense (NS) NF1 mutations, which can create an NF1-null state, strongly correlate with relapse risk (HR=2.6, submitted). Surprisingly, no recurrent missense NF1 mutations inactivating GAP activity were found in our cohort, and such mutations are rare in primary cancers in general. We thus posulated that complete loss of NF1 protein (e.g., caused by NS/FS mutations), but not GAP inactivation alone, is required to drive endocrine therapy resistance. Here we demonstrate that NF1 loss (by gene silencing) in ER+ breast cancer cells greatly enhances ligand-dependent ER transcriptional activity in vitro and in vivo, causing estradiol (E2) hypersensitivity and tamoxifen agonism. Mechanistically we show that NF1 can bind directly to ER, an interaction enhanced by tamoxifen but not by E2. Binding is mediated by leucine/isoleucine-rich motifs in NF1, analogous to other ER co-repressors. Mutations in these motifs (some of which are targeted by somatic mutation in cancer) inhibit ER binding and transcriptional activity without impacting GAP activity; conversely, inactivating GAP activity does not impact ER binding and repression. To validate NF1 as an ER co-repressor, we examined proteomic data from & gt;100 breast cancer patients in the CPTAC data base and found that proteins whose levels are positively correlated with NF1 are highly enriched with factors known to bind nuclear receptors; by contrast, levels of another GAP, p120, which lacks ER binding sites, are negatively correlated with these molecules. Importantly, preclinical treatment studies indicate that while NF1-deficient ER+ breast cancer should not be treated by tamoxifen or aromatase inhibitors, fulvestrant, which degrades ER, remains effective. However, fulvestrant monotherapy can activate the Ras-MAP pathway, which may promote cell survival and acquired fulvestrant resistance unless combined with dabrafinib and trametinib to inhibit Raf and MEK —a clinical trial for this combination is in development. Our data suggest that NF1 is a dual negative regulator at the intersection of two potent oncogenic signaling pathways, Ras and ER. Combination therapy targeting both the ER and the Ras-Raf pathways should be investigated for NF1-deficient cancers driven by ER. Citation Format: Eric C. Chang, zeyi Zheng, Meenakshi Anurag, Jin Gao, Burcu Cakar, Xinhui Du, Jing Li, Philip Lavere, Jonathan T. Lei, Purba Singh, Sinem Seker, Wei Song, Jianheng Peng, Tiffany Nguyen, Doug Chan, Xi Chen, Kimberly C. Banks, Richarad B. Lanman, Maryam Shafaee, Susan Hilsenbeck, Charles Foulds, Matthew J. Ellis. NF1 as an estrogen receptor-α co-repressor in breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1814.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of the American Academy of Dermatology, Elsevier BV, Vol. 61, No. 4 ( 2009-10), p. 677.e1-677.e14
    Type of Medium: Online Resource
    ISSN: 0190-9622
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 2001404-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...