GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 1987
    In:  Journal of Atmospheric and Oceanic Technology Vol. 4, No. 1 ( 1987-03), p. 227-232
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 4, No. 1 ( 1987-03), p. 227-232
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1987
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 103, No. D13 ( 1998-07-20), p. 16433-16455
    Abstract: During Lagrangian experiment B (LB in the following) of the First Aerosol Characterization Experiment (ACE 1), a clean maritime air mass was followed over a period of 28 hours. During that time span, the vertical distribution of aerosols and their gas phase precursors were characterized by a total of nine aircraft soundings which were performed during three research flights that followed the trajectory of a set of marked tetroons. The objective of this paper is to study the time evolution of gas phase photochemistry in this Lagrangian framework. A box model approach to the wind shear driven and vertically stratified boundary layer is questionable, since its basic assumption of instantaneous turbulent mixing of the entire air column is not satisfied here. To overcome this obstacle, a one‐dimensional Lagrangian boundary layer meteorological model with coupled gas phase photochemistry is used. To our knowledge, this is the first time that such a model is applied to a Lagrangian experiment and that enough measurements are available to fully constrain the simulations. A major part of this paper is devoted to the question of to what degree our model is able to reproduce the time evolution and the vertical distribution of the observed species. Comparison with observations of O 3 , OH, H 2 O 2 , CH 3 OOH, DMS, and CH 3 I, made on the nine Lagrangian aircraft soundings shows that this is in general the case, although the dynamical simulation started to deviate from the observations on the last Lagrangian flight. In agreement with experimental findings reported by Q. Wang et al. (unpublished manuscript, 1998b), generation of turbulence in the model appears to be most sensitive to the imposed sea surface temperature. Concerning the different modeled and observed chemical species, a number of conclusions are drawn: (1) Ozone, having a relatively long photochemical lifetime in the clean marine boundary layer, is found to be controlled by vertical transport processes, in particular synoptic‐scale subsidence or ascent. (2) Starting with initally constant vertical profiles, the model is able to “create” qualitatively the vertical structure of the observed peroxides. (3) OH concentrations are in agreement with observations, both on cloudy and noncloudy days. On the first flight, a layer of dry ozone rich air topped the boundary layer. The model predicts a minimum in OH and peroxides at that altitude consistent with observations. (4) Atmospheric DMS concentrations are modeled correctly only when using the Liss and Merlivat [1986] flux parameterization, the Wanninkhof [1992] flux parameterization giving values twice those observed. To arrive at this conclusion, OH is assumed to be the major DMS oxidant, but no assumptions about mixing heights or entrainment rates are necessary in this type of model. DMS seawater concentrations are constrained by observations.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1998
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Journal of Geophysical Research: Atmospheres Vol. 104, No. D13 ( 1999-07-20), p. 16275-16295
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D13 ( 1999-07-20), p. 16275-16295
    Abstract: We discuss two techniques based on mixed‐layer scaling for estimating trace gas surface emission fluxes from aircraft using instruments that do not have sufficient frequency response for direct eddy correlation measurements. The first is the mixed‐layer gradient technique, which requires accurate measurements of mean concentrations at several heights in the clear convective planetary boundary layer (CBL) to resolve gradients from even strong surface sources of short‐lived trace gases. The flux‐gradient relationship is obtained from large‐eddy numerical simulations of the CBL. We show that this technique is limited to trace gases with lifetimes of about a day or less. An example is dimethylsulfide (DMS), which is emitted from the ocean and has a lifetime of about a day. Surface DMS flux was estimated from data collected from the NASA P‐3B research aircraft during the Pacific Exploratory Mission‐Tropics (PEM‐Tropics) flight 7 (August 24, 1996), when the aircraft flew a sequence of constant altitude circles about 50 km in diameter at different heights in and above the boundary layer, following the boundary layer air trajectory. The flight took place between 0530 and 1330 local solar time, providing a good opportunity to observe diurnal changes within a Lagrangian framework under nearly clear‐sky conditions. The resulting DMS flux of 2.5±0.8 pptv m s −1 (6.1±1.9)×10 13 molecules m −2 s −1 , or 8.8±2.8 μmols m −2 d −1 is on the high end of previous measurements in this milieu. The second technique is the mixed‐layer variance technique, which uses measurements of the variance at several heights in the CBL to estimate the surface flux. A major problem with the variance technique is accounting for the contribution of mesoscale variability to the measured variance. Several sources of mesoscale variability were identified: clusters of small cumulus clouds rising through the top of the boundary layer, mesoscale variations in the horizontal wind leading to inaccurate tracking of the air mass and, to a lesser extent, the presence of horizontal roll vortices in some areas of the boundary layer. We show that the variance technique should be applicable to estimating surface fluxes of short‐lived trace gases in cumulus‐free boundary layers that are horizontally uniform, if sample‐collection times of about 10 s or less are used. We also show that it may be possible to utilize mesoscale variance measurements to estimate surface fluxes and lifetimes of species which have lifetimes of perhaps a week or more.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 1990
    In:  Microchemical Journal Vol. 42, No. 1 ( 1990-8), p. 138-145
    In: Microchemical Journal, Elsevier BV, Vol. 42, No. 1 ( 1990-8), p. 138-145
    Type of Medium: Online Resource
    ISSN: 0026-265X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1990
    detail.hit.zdb_id: 1471165-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1990
    In:  Journal of Atmospheric Chemistry Vol. 11, No. 4 ( 1990-11), p. 299-308
    In: Journal of Atmospheric Chemistry, Springer Science and Business Media LLC, Vol. 11, No. 4 ( 1990-11), p. 299-308
    Type of Medium: Online Resource
    ISSN: 0167-7764 , 1573-0662
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1990
    detail.hit.zdb_id: 793876-7
    detail.hit.zdb_id: 1475524-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 1987
    In:  Analytical Chemistry Vol. 59, No. 8 ( 1987-04-15), p. 1196-1200
    In: Analytical Chemistry, American Chemical Society (ACS), Vol. 59, No. 8 ( 1987-04-15), p. 1196-1200
    Type of Medium: Online Resource
    ISSN: 0003-2700 , 1520-6882
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 1987
    detail.hit.zdb_id: 1483443-1
    detail.hit.zdb_id: 1508-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Chemical Society (ACS) ; 1986
    In:  Analytical Chemistry Vol. 58, No. 13 ( 1986-11-01), p. 2688-2691
    In: Analytical Chemistry, American Chemical Society (ACS), Vol. 58, No. 13 ( 1986-11-01), p. 2688-2691
    Type of Medium: Online Resource
    ISSN: 0003-2700 , 1520-6882
    Language: English
    Publisher: American Chemical Society (ACS)
    Publication Date: 1986
    detail.hit.zdb_id: 1483443-1
    detail.hit.zdb_id: 1508-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1993
    In:  Journal of Geophysical Research: Atmospheres Vol. 98, No. D12 ( 1993-12-20), p. 23423-23433
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 98, No. D12 ( 1993-12-20), p. 23423-23433
    Abstract: A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1993
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D13 ( 1999-07-20), p. 16197-16212
    Abstract: In situ and laser remote measurements of gases and aerosols were made with airborne instrumentation to establish a baseline chemical signature of the atmosphere above the South Pacific Ocean during the NASA Global Tropospheric Experiment (GTE)/Pacific Exploratory Mission‐Tropics A (PEM‐Tropics A) conducted in August‐October 1996. This paper discusses general characteristics of the air masses encountered during this experiment using an airborne lidar system for measurements of the large‐scale variations in ozone (O 3 ) and aerosol distributions across the troposphere, calculated potential vorticity (PV) from the European Centre for Medium‐Range Weather Forecasting (ECMWF), and in situ measurements for comprehensive air mass composition. Between 8°S and 52°S, biomass burning plumes containing elevated levels of O 3 , over 100 ppbv, were frequently encountered by the aircraft at altitudes ranging from 2 to 9 km. Air with elevated O 3 was also observed remotely up to the tropopause, and these air masses were observed to have no enhanced aerosol loading. Frequently, these air masses had some enhanced PV associated with them, but not enough to explain the observed O 3 levels. A relationship between PV and O 3 was developed from cases of clearly defined O 3 from stratospheric origin, and this relationship was used to estimate the stratospheric contribution to the air masses containing elevated O 3 in the troposphere. The frequency of observation of the different air mass types and their average chemical composition is discussed in this paper.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 104, No. D17 ( 1999-09-20), p. 21803-21817
    Abstract: Canister sampling for the determination of atmospheric mixing ratios of nonmethane hydrocarbons (NMHCs), selected halocarbons, and methyl nitrate was conducted aboard the National Center for Atmospheric Research (NCAR) C‐130 aircraft over the Pacific and Southern Oceans as part of the First Aerosol Characterization Experiment (ACE 1) during November and December 1995. A latitudinal profile, flown from 76°N to 60°S, revealed latitudinal gradients for most trace gases. NMHC and halocarbon gases with predominantly anthropogenic sources, including ethane, ethyne, and tetrachloroethene, exhibited significantly higher mixing ratios in the northern hemisphere at all altitudes. Methyl chloride exhibited its lowest mixing ratios at the highest northern hemisphere latitudes, and the distributions of methyl nitrate and methyl iodide were consistent with tropical and subtropical oceanic sources. Layers containing continental air characteristic of aged biomass burning emissions were observed above about 3 km over the remote southern Pacific and near New Zealand between approximately 19°S and 43°S. These plumes originated from the west, possibly from fires in southern Africa. The month‐long intensive investigation of the clean marine southern midlatitude troposphere south of Australia revealed decreases in the mixing ratios of ethane, ethyne, propane, and tetrachloroethene, consistent with their seasonal mixing ratio cycle. By contrast, increases in the average marine boundary layer concentrations of methyl iodide, methyl nitrate, and dimethyl sulfide (DMS) were observed as the season progressed to summer conditions. These increases were most appreciable in the region south of 44°S over Southern Ocean waters characterized as subantarctic and polar, indicating a seasonal increase in oceanic productivity for these gases.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...