GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 6 ( 2021-06-01), p. 1009-1018
    Abstract: Tesevatinib is a potent oral brain penetrant EGFR inhibitor currently being evaluated for glioblastoma therapy. Tesevatinib distribution was assessed in wild-type (WT) and Mdr1a/b(-/-)Bcrp(-/-) triple knockout (TKO) FVB mice after dosing orally or via osmotic minipump; drug–tissue binding was assessed by rapid equilibrium dialysis. Two hours after tesevatinib dosing, brain concentrations in WT and TKO mice were 0.72 and 10.03 μg/g, respectively. Brain-to-plasma ratios (Kp) were 0.53 and 5.73, respectively. With intraperitoneal infusion, brain concentrations were 1.46 and 30.6 μg/g (Kp 1.16 and 25.10), respectively. The brain-to-plasma unbound drug concentration ratios were substantially lower (WT mice, 0.03–0.08; TKO mice, 0.40–1.75). Unbound drug concentrations in brains of WT mice were 0.78 to 1.59 ng/g. In vitro cytotoxicity and EGFR pathway signaling were evaluated using EGFR-amplified patient-derived glioblastoma xenograft models (GBM12, GBM6). In vivo pharmacodynamics and efficacy were assessed using athymic nude mice bearing either intracranial or flank tumors treated by oral gavage. Tesevatinib potently reduced cell viability [IC50 GBM12 = 11 nmol/L (5.5 ng/mL), GBM6 = 102 nmol/L] and suppressed EGFR signaling in vitro. However, tesevatinib efficacy compared with vehicle in intracranial (GBM12, median survival: 23 vs. 18 days, P = 0.003) and flank models (GBM12, median time to outcome: 41 vs. 33 days, P = 0.007; GBM6, 44 vs. 33 days, P = 0.007) was modest and associated with partial inhibition of EGFR signaling. Overall, tesevatinib efficacy in EGFR-amplified PDX GBM models is robust in vitro but relatively modest in vivo, despite a high brain-to-plasma ratio. This discrepancy may be explained by drug-tissue binding and compensatory signaling.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Pharmacology and Experimental Therapeutics, American Society for Pharmacology & Experimental Therapeutics (ASPET), Vol. 363, No. 2 ( 2017-11), p. 136-147
    Type of Medium: Online Resource
    ISSN: 0022-3565 , 1521-0103
    Language: English
    Publisher: American Society for Pharmacology & Experimental Therapeutics (ASPET)
    Publication Date: 2017
    detail.hit.zdb_id: 1475023-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 22, No. Supplement_2 ( 2020-11-09), p. ii86-ii86
    Abstract: Radio-resistance mechanisms limit the benefit of radiation therapy (RT) for melanoma brain metastases. A key pathway for radiation-induced DNA double-strand break repair is non-homologous end joining, which is critically mediated by DNA-dependent protein kinase (DNA-PKcs). Here we evaluated radio-sensitizing effects of M3814, a selective oral inhibitor of DNA-PKcs, in patient-derived xenografts (PDXs) of melanoma brain metastases. In a clonogenic survival assay, M3841 augmented RT-induced killing of M12 cells at concentrations of ≥300 nM, and a minimum of 16 h exposure with ~300 nM M3814 was required for effective sensitization. M3814 inhibited RT-induced (5 Gy) auto-phosphorylation of serine-2056 of DNA-PKcs in primary cultures of M12, M15 and M27 PDX lines. Interestingly, inhibition of RT-induced DNA-PKcs by M3814 coincided with increased KAP1 phosphorylation, a DNA damage signaling regulated via ATM. Persistent γH2AX foci were observed in 28% M12 cells at 24 hours after co-treatment with M3814 and RT as compared to 12% cells following RT alone. In vivo pharmacokinetic analysis after single oral dose of 20 mg/kg M3814, showed reasonably short half-life (~2.44 hours) and poor brain distribution in wild-type FBV mice (Kpuu, 0.027). Consistent with an efflux liability, brain distribution of M3814 in triple knockout mice for BCRP/MDR1A/B was ~11 fold higher (Kpuu, 0.215). Compared to normal brain, much higher M3814 concentrations were detected in intracranially implanted M12 tumors (~23 fold and ~20 fold) 2 and 6 hours after a single oral dose of 50mg/kg respectively. The relative exclusion of M3814 from normal brain as compared to brain metastases suggests that this drug may have a favorable toxicity profile when combined with radiation for treatment of melanoma brain metastases, and this hypothesis is being tested in ongoing efficacy studies.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 21, No. 8 ( 2015-04-15), p. 1916-1924
    Abstract: Purpose: Wee1 regulates key DNA damage checkpoints, and in this study, the efficacy of the Wee1 inhibitor MK-1775 was evaluated in glioblastoma multiforme (GBM) xenograft models alone and in combination with radiation and/or temozolomide. Experimental Design: In vitro MK-1775 efficacy alone and in combination with temozolomide, and the impact on DNA damage, was analyzed by Western blotting and γH2AX foci formation. In vivo efficacy was evaluated in orthotopic and heterotopic xenografts. Drug distribution was assessed by conventional mass spectrometry (MS) and matrix-assisted laser desorption/ionization (MALDI)-MS imaging. Results: GBM22 (IC50 = 68 nmol/L) was significantly more sensitive to MK-1775 compared with five other GBM xenograft lines, including GBM6 (IC50 & gt;300 nmol/L), and this was associated with a significant difference in pan-nuclear γH2AX staining between treated GBM22 (81% cells positive) and GBM6 (20% cells positive) cells. However, there was no sensitizing effect of MK-1775 when combined with temozolomide in vitro. In an orthotopic GBM22 model, MK-1775 was ineffective when combined with temozolomide, whereas in a flank model of GBM22, MK-1775 exhibited both single-agent and combinatorial activity with temozolomide. Consistent with limited drug delivery into orthotopic tumors, the normal brain to whole blood ratio following a single MK-1775 dose was 5%, and MALDI-MS imaging demonstrated heterogeneous and markedly lower MK-1775 distribution in orthotopic as compared with heterotopic GBM22 tumors. Conclusions: Limited distribution to brain tumors may limit the efficacy of MK-1775 in GBM. Clin Cancer Res; 21(8); 1916–24. ©2015 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 16, No. 12 ( 2017-12-01), p. 2735-2746
    Abstract: Poly ADP-ribose polymerase (PARP) inhibitors, including talazoparib, potentiate temozolomide efficacy in multiple tumor types; however, talazoparib-mediated sensitization has not been evaluated in orthotopic glioblastoma (GBM) models. This study evaluates talazoparib ± temozolomide in clinically relevant GBM models. Talazoparib at 1–3 nmol/L sensitized T98G, U251, and GBM12 cells to temozolomide, and enhanced DNA damage signaling and G2–M arrest in vitro. In vivo cyclical therapy with talazoparib (0.15 mg/kg twice daily) combined with low-dose temozolomide (5 mg/kg daily) was well tolerated. This talazoparib/temozolomide regimen prolonged tumor stasis more than temozolomide alone in heterotopic GBM12 xenografts [median time to endpoint: 76 days versus 50 days temozolomide (P = 0.005), 11 days placebo (P & lt; 0.001)]. However, talazoparib/temozolomide did not accentuate survival beyond that of temozolomide alone in corresponding orthotopic xenografts [median survival 37 vs. 30 days with temozolomide (P = 0.93), 14 days with placebo, P & lt; 0.001]. Average brain and plasma talazoparib concentrations at 2 hours after a single dose (0.15 mg/kg) were 0.49 ± 0.07 ng/g and 25.5±4.1 ng/mL, respectively. The brain/plasma distribution of talazoparib in Bcrp−/− versus wild-type (WT) mice did not differ, whereas the brain/plasma ratio in Mdr1a/b−/− mice was higher than WT mice (0.23 vs. 0.02, P & lt; 0.001). Consistent with the in vivo brain distribution, overexpression of MDR1 decreased talazoparib accumulation in MDCKII cells. These results indicate that talazoparib has significant MDR1 efflux liability that may restrict delivery across the blood–brain barrier, and this may explain the loss of talazoparib-mediated temozolomide sensitization in orthotopic versus heterotopic GBM xenografts. Mol Cancer Ther; 16(12); 2735–46. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1381-1381
    Abstract: Radio-resistant properties of melanomas undermine benefit of radiation therapy (RT). DNA-dependent protein kinase (DNA-PKcs) is essential for the non-homologous end joining (NHEJ) mediated repair DNA double-strand break (DSB). We evaluated radio-sensitizing effects of M3814, a selective oral inhibitor of DNA-PKcs, in patient-derived xenografts (PDXs) of melanoma brain metastases. M3814 (≥300 nM) inhibited RT-induced (5 Gy) auto-phosphorylation of serine-2056 of DNA-PKcs in primary cultures of M12, M15 and M27 PDX lines. Interestingly, inhibition of RT-induced DNA-PKcs by M3814 coincided with increased KAP1 phosphorylation, a DNA damage signaling regulated via ATM. As a measure of lasting DNA damage, persistent γH2AX foci were observed in 28% cells 24 hours after co-treatment with M3814 and RT as compared to RT controls, where only 12% cells had persistent γH2AX foci. In a clonogenic survival assay, M3841 augmented RT-induced killing of M12 cells in a dose dependent manner. However, a minimal 16 h exposure with ~300 nM M3814 was most effective treatment. Pharmacokinetics (PK) after single oral dose of 20 mg/kg M3814, showed considerably short half-life (~2.44 hours) and poor brain distribution in wildtype (WT) FBV mice (Kpuu, 0.027). Suggesting liability to efflux transporters, brain distribution of M3814 in TKO mice (triple knockouts for efflux transporters Mdr1a, Mdr1b and BCRP1) was ~11 fold higher than WT animals (kpuu, 0.215). Using this preliminary PK data, simulations were performed using simBiology software to define dosing regimen and schedule to maximize drug exposures in brain. Based on this in silico modeling, two regimens- (A: 125 mg/kg twice a day (at 0 and 7 hours), and B: 50 mg/kg dose followed by three additional doses of 35 mg/kg per day at 4 hour intervals), combined with a single fraction RT (3 Gy) delivered 10 min after the first M3814 dose in each regimen, were tested in athymic nude mice carrying M12 flank tumors. In this study, drug levels achieved in brain and plasma (121±95, 1914±1661 nM with regimens A and 79±51, 1205±664 nM with regimen B, respectively at 24 h), exceeded predictions. Consistent with a much higher accumulation of M3814 in flank tumor tissues (1.5 to 3.4 fold higher than plasma), therapy with M3814/RT had robust pharmacodynamics effects on DNA damage signaling both at 6 and 24 hours of treatment as compared to RT alone. In summary, M3814 is a promising radio-sensitizer in melanoma brain metastases. Further studies will determine efficacy and pharmacodynamics effects of M3814/RT regimens in relevant orthotopic models of brain metastases and address potential concerns of normal tissue toxicity. Citation Format: Jianxiong Ji, Emily J. Smith, Paige Sarkaria, Ann C. Mladek, Surabhi Talele, Katelyn Swanson, Afroz S. Mohammad, Lihong He, Zeng Hu, Katrina K. Bakken, Shiv K. Gupta, Danielle M. Burgenske, Gaspar J. Kitange, William F. Elmquist, Jann N. Sarkaria. Inhibition of DNA-PKcs by M3814 potentiates efficacy of ionizing radiation in patient derived xenografts of melanoma brain metastases [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1381.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 14 ( 2014-07-15), p. 3730-3741
    Abstract: Purpose: Effective sensitizing strategies potentially can extend the benefit of temozolomide (TMZ) therapy in patients with glioblastoma (GBM). We previously demonstrated that robust TMZ-sensitizing effects of the [poly (ADP-ribose) polymerase] (PARP) inhibitor veliparib (ABT-888) are restricted to TMZ-sensitive GBM xenografts. The focus of this study is to provide an understanding for the differential sensitization in paired TMZ-sensitive and -resistant GBM models. Experimental Design: The impact of veliparib on TMZ-induced cytotoxicity and DNA damage was evaluated in vitro and in vivo in models of acquired TMZ resistance (GBM12TMZ-mgmtHigh, GBM12TMZ-mgmtLow, and U251TMZ), inherent TMZ resistance (T98G), and TMZ-sensitive (U251 and GBM12). In vivo drug efficacy, pharmacokinetics, and pharmacodynamics were analyzed using clinically relevant dosing regimens. Results: Veliparib enhanced TMZ cytotoxicity and DNA-damage signaling in all GBM models in vitro with more pronounced effects in TMZ-resistant lines at 3 to 10 μmol/L veliparib. In vivo, combined TMZ/veliparib, compared with TMZ alone, significantly delayed tumor growth and enhanced DNA-damage signaling and γH2AX levels in the sensitive GBM12 xenograft line but not in the resistant GBM12TMZ lines. The pharmacokinetic profile of veliparib was similar for GBM12 and GBM12TMZ tumors with Cmax (∼1.5 μmol/L) in tissue significantly lower than concentrations associated with optimal in vitro sensitizing effects for resistant tumors. In contrast, robust suppression of PARP-1 expression by shRNA significantly increased TMZ sensitivity of U251TMZ in vitro and in vivo. Conclusions: In vitro cytotoxicity assays do not adequately model the therapeutic index of PARP inhibitors, as concentrations of veliparib and TMZ required to sensitize TMZ-resistant cancer cells in vivo cannot be achieved using a tolerable dosing regimen. Clin Cancer Res; 20(14); 3730–41. ©2014 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 6276-6276
    Abstract: Despite aggressive treatment that involves surgery, radiation and temozolomide therapy, a significant morbidity from glioblastoma (GBM) recurrence highlights the pressing unmet medical need to develop effective novel therapies for GBM. Murine Double Minute 2 (MDM2) is an important regulator of the p53 tumor suppressor, which promotes cell cycle arrest and apoptosis in response to DNA damage. Here we have assessed the efficacy of RG7388, a purported brain penetrant MDM2-inhibitor, alone or combined with radiation therapy (RT) in patient-derived xenograft (PDX) models of GBM. In vitro, RG7388 suppressed viability of GBM PDX short-term stem cell cultures of p53 wildtype lines with MDM2-amplification (GBM46 and 108, IC50 25 and 11 nM, respectively) or without MDM2-amplification (GBM10 and 14, IC50 43.5 and 9.1 nM, respectively). Serum proteins appear to reduce efficacy of RG7388, which is supported by the notion that adding 2.5% bovine serum albumin to a serum free stem cell cultures increased the IC50 by 3 to 5 fold. At the molecular level, both RG7388 and RT could induce p53 signaling in GBM10, but a more robust induction was observed with the combination. In athymic nude mice, RG7388 readily distributes into normal brain as measured by LCMS-MS at 1 hour after five daily oral doses (70 mg/kg) the average RG7388 concentrations in brain and plasma were 2167 ng/g and 4423 ng/ml, respectively. In an initial efficacy study using flank tumors established from GBM10, one week of dosing at 70 mg/kg/day RG7388 alone was ineffective, while combining RG7388 with focal radiation (4 daily doses of 5 Gy each) had a moderate 15 day delay in tumor progression. However, in an MDM2-amplified GBM108 line with a relatively intact blood-brain barrier, one week of daily RG7388 dosing, either alone or in combination with RT was remarkably effective (median survival 71 days with RG7388 alone vs. 29 days with vehicle, p & lt;0.0001; and 262 days for RG7388/RT vs. 74 days with RT, p=0.017). Taken together, RG7388 alone or in combination with RT is highly effective in an MDM2-amplified pre-clinical model of GBM. Determining impact of serum protein binding on drug pharmacokinetics and further evaluation of pharmacodynamic effects and orthotopic therapy in additional p53 wildtype PDX lines will help to increase our understanding if RG7388/RT therapy can be used in a larger population of GBM tumors. Citation Format: Shiv K. Gupta, Ann C. Mladek, Surabhi Telele, Afroz S. Mohammad, Lihong He, Zeng Hu, Katrina K. Bakken, Danielle M. Burgenske, Brett L. Carlson, William F. Elmquist, Jann N. Sarkaria. Brain penetrant MDM2 inhibitor RG7388 extends survival benefit of radiation treatment in select glioblastoma patient-derived xenograft models [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 6276.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of the National Cancer Institute, Oxford University Press (OUP), Vol. 108, No. 5 ( 2015-05), p. djv369-
    Type of Medium: Online Resource
    ISSN: 0027-8874 , 1460-2105
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2992-0
    detail.hit.zdb_id: 1465951-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Neuro-Oncology Advances, Oxford University Press (OUP), Vol. 4, No. 1 ( 2022-01-01)
    Abstract: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood–brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results Dose-finding studies in orthotopic GBM6 identified single infusion of 2 μg Ser-T and 60 μg Depatux-M as safe and effective associated with extended survival prolongation ( & gt;300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.
    Type of Medium: Online Resource
    ISSN: 2632-2498
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 3009682-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...