GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Clinical Lymphoma Myeloma and Leukemia, Elsevier BV, Vol. 21 ( 2021-10), p. S88-S89
    Type of Medium: Online Resource
    ISSN: 2152-2650
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2540998-0
    detail.hit.zdb_id: 2193618-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 210, No. 6 ( 2023-03-15), p. 774-785
    Abstract: Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1β and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2023
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1577-1577
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1577-1577
    Abstract: Background Proteasome inhibitors (PI) have emerged as a powerful, cell biology-based treatment option for multiple myeloma (MM) and build a central backbone for MM treatment with three proteasome-inhibiting drugs currently approved: bortezomib (BTZ), carfilzomib (CFZ) and ixazomib. However, despite the high anti-MM activity of PI, MM cells adapt to the selective pressure of PI treatment in most cases to date and most MM patients relapse during or after treatment with PI, develop PI-refractory disease and ultimately die. Therefore, understanding and overcoming PI resistance is a key challenge for MM therapy. Our previous in vitro studies on PI-resistant MM suggest that PI-adapted, MM cells show very distinct features of general metabolism and cell biology that differentiate them from PI-sensitive MM, derived from the same cell line. We hypothesize that this highly specialized and adapted nature of PI-resistant MM offers novel areas of vulnerability, that differ from the therapeutic targets in PI-sensitive MM. The aim of our study was to identify essential drug targets and pathways in PI-resistant MM using genome-wide functional screening with the CRISPR/Cas9 system that could serve as novel therapeutic targets in PI-resistant MM. Methods We used genome-wide CRISPR/Cas9-based loss-of-function screening with Brunello library in L363-BTZ and RPMI-8226-BTZ cells, adapted to grow in the presence of 90 nM BTZ. The overlapping bortezomib genetic sensitivity candidates were further validated in the set of BTZ-resistant cells (L363-BTZ, RPMI-8226-BTZ, MM1S-BTZ and AMO-BTZ) cells using shRNA silencing or single-gene specific knockout or genetic overexpression using CCK8 viability assay. Subsequent functional analysis of the highest ranking BTZ sensitivity candidates in BTZ-adapted cells included apoptosis and cell cycle analysis, qPCR and western blotting, SILAC, proteasome activity determination using activity-based probes and FRAP analysis. Results CRISPR/Cas9-screening identified two candidate genes for BTZ sensitivity, ECPAS (KIAA0368; Ecm29 Proteasome Adaptor and Scaffold protein) and PSME1 (an 11S regulator complex subunit), as consistent screening hits in two independent BTZ-adapted MM cell lines. Both genes are related to proteasome, but do not build the proteasome core particle and do not have a proteolytic activity. Specific knock-down or knock-out of ECPAS sensitized PI-naïve cells to BTZ and CFZ, while significantly more sensitizing BTZ-adapted cells to both PI. Likewise, overexpression of PSMF1, an inhibitor of 11S regulator complex, sensitized BTZ-resistant as well as sensitive cells to BTZ. ECPAS-depleted BTZ-adapted cells showed accumulation of poly-ubiquitinated proteasome substrate proteins, induction of the unfolded protein response, cell cycle arrest and induction of apoptosis, together with changes in protein synthesis after the treatment with 50 nM bortezomib, in contrast to BTZ-adapted control cells. FRAP analysis of cells with GFP-tagged PSMD6 revealed that the intracellular mobility of proteasomes in ECPAS-depleted cells was reduced. Importantly, proteasome activity determined by activity-based probes was not impaired in ECPAS-depleted cells. Conclusion In conclusion, BTZ-resistant MM cells uniquely show a high dependency on the proteasome adaptor and scaffold protein ECPAS, which has been shown to be involved in coupling of proteasome in different compartments and promotes proteasome dissociation under oxidative stress. Specifically in PI-resistant MM, ECPAS is important to ensure functional proteasome, is involved in controlling the intracellular mobility of proteasomes, likely to ensure high proteasome turnover. ECPAS therefore represents a novel candidate that may be targeted to specifically re-sensitize PI-resistant MM cells to proteasome inhibitor treatment. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 11-11
    Abstract: INTRODUCTION Nelfinavir is a highly lipophilic, first generation HIV-protease inhibitor (HIV-PI) approved for HIV treatment. It has largely been replaced by next-generation HIV-PI with increased specificity and efficacy for HIV therapy, partly reflecting the significant rate of the off-target activity of nelfinavir. Increasing preclinical and clinical evidence shows that nelfinavir has broad anti-cancer activity as a single agent and in combination, potentially related to its off-target activity in mammalian cells. Nelfinavir is particularly effective in the treatment of proteasome inhibitor-refractory multiple myeloma (MM), where the combination of nelfinavir+bortezomib+dexamethasone yielded an overall response rate (ORR, PR or better) & gt; 65% in a Phase II clinical trial. The targets and molecular mechanism of action of nelfinavir in MM are unknown. This hampers both, a rational clinical repositioning and development of nelfinavir as antineoplastic drug, as well as the design, synthesis and testing of next generation nelfinavir-like compounds with optimized antineoplastic activity and improved specificity or pharmacologic properties. We therefore aimed to take an unbiased target-identification approach to identify molecular targets of nelfinavir in human malignant cells and link them to cell biological processes and mechanisms that mediate sensitivity or resistance to nelfinavir treatment. METHODS Proteome-wide affinity-purification of targets binding the nelfinavir active site was combined with genome-wide CRISPR/Cas9-based screening to identify protein partners interacting with nelfinavir and candidate genetic contributors affecting nelfinavir cytotoxicity. Multiple intracellular reporter systems including RUSH system, ATP/ADP constructs; FRAP microscopy, Seahorse measurements, flow cytometry, qPCR, metabolic labelling, lipidomics and viability assays were used to dissect functional alterations in pathways related to nelfinavir targets. RESULTS We identified a common set of proteins interacting specifically with the active site of nelfinavir. These proteins are embedded in intracellular, lipid-rich membranes of mitochondria (VDAC1,2,3, ANT2), endoplasmic reticulum (BCAP31, CANX, SRPRB) and nuclear envelope (PGRMC2) and are consistent across multiple cancer cell types. ADIPOR2, a key regulator gene of membrane lipid fluidity, was identified as a key nelfinavir resistance gene, while genes involved in fatty acids (FAs) and cholesterol metabolism, vesicular trafficking and mitochondria biogenesis are candidate sensitivity genes. We further show that via binding to proteins in lipid-rich membranes nelfinavir affects membrane composition and reduces membrane fluidity, leading to induction of FAs synthesis and the unfolded protein response (UPR). Via its structural interference with membrane fluidity, nelfinavir impairs the function and mobility of a diverse set of membrane-associated proteins and processes, such as glucose flux and processing, mitochondria respiration, energy supply, transmembrane vesicular transport and ABCB1-mediated drug efflux, as we show in different reporter systems in live MM cells. These functional effects are prevented by addition of metabolically inert lipids to be incorporated in membranes, supporting a direct structural activity of nelfinavir. The adaptive biology of proteasome inhibitor (PI)-resistant myeloma relies on metabolic reprogramming and changes in lipid composition, drug export and down-modulation of the UPR. Modulation of membrane fluidity and depletion of FAs/cholesterol is synergistic with proteasome inhibitors in PI-resistant MM. Thus, the mechanism of action of nelfinavir perfectly matches with the biology of PI-resistant MM, serving as a molecular rational for its significant clinical activity. CONCLUSION We here demonstrate in vitro that the activity of nelfinavir against MM cells is triggered through changes in lipid metabolism and the fluidity of lipid-rich membranes. Pharmacologic targeting of membrane fluidity is a novel, potent mechanism to achieve anti-cancer activity, in particular against PI-refractory MM. This mechanism explains the clinical activity of nelfinavir in MM treatment as well as the key side effects of nelfinavir during antiretroviral therapy. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 17 ( 2021-09-01), p. 4581-4593
    Abstract: The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)–refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology. We combined proteome-wide affinity-purification of nelfinavir-interacting proteins with genome-wide CRISPR/Cas9–based screening to identify protein partners that interact with nelfinavir in an activity-dependent manner alongside candidate genetic contributors affecting nelfinavir cytotoxicity. Nelfinavir had multiple activity-specific binding partners embedded in lipid bilayers of mitochondria and the endoplasmic reticulum. Nelfinavir affected the fluidity and composition of lipid-rich membranes, disrupted mitochondrial respiration, blocked vesicular transport, and affected the function of membrane-embedded drug efflux transporter ABCB1, triggering the integrated stress response. Sensitivity to nelfinavir was dependent on ADIPOR2, which maintains membrane fluidity by promoting fatty acid desaturation and incorporation into phospholipids. Supplementation with fatty acids prevented the nelfinavir-induced effect on mitochondrial metabolism, drug-efflux transporters, and stress-response activation. Conversely, depletion of fatty acids/cholesterol pools by the FDA-approved drug ezetimibe showed a synergistic anticancer activity with nelfinavir in vitro. These results identify the modification of lipid-rich membranes by nelfinavir as a novel mechanism of action to achieve broad anticancer activity, which may be suitable for the treatment of PI–refractory multiple myeloma. Significance: Nelfinavir induces lipid bilayer stress in cellular organelles that disrupts mitochondrial respiration and transmembrane protein transport, resulting in broad anticancer activity via metabolic rewiring and activation of the unfolded protein response.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...