GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 628 ( 2019-8), p. A2-
    Abstract: Context. The chemical composition of high-mass protostars reflects the physical evolution associated with different stages of star formation. In addition, the spatial distribution and velocity structure of different molecular species provide valuable information on the physical structure of these embedded objects. Despite an increasing number of interferometric studies, there is still a high demand for high angular resolution data to study chemical compositions and velocity structures for these objects. Aims. The molecular inventory of the forming high-mass star AFGL 4176, located at a distance of ~3.7 kpc, is studied in detail at a high angular resolution of ~0.35′′, equivalent to ~1285 au at the distance of AFGL 4176. This high resolution makes it possible to separate the emission associated with the inner hot envelope and disc around the forming star from that of its cool outer envelope. The composition of AFGL 4176 is compared with other high- and low-mass sources, and placed in the broader context of star formation. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA) the chemical inventory of AFGL 4176 has been characterised. The high sensitivity of ALMA made it possible to identify weak and optically thin lines and allowed for many isotopologues to be detected, providing a more complete and accurate inventory of the source. For the detected species, excitation temperatures in the range 120–320 K were determined and column densities were derived assuming local thermodynamic equilibrium and using optically thin lines. The spatial distribution of a number of species was studied. Results. A total of 23 different molecular species and their isotopologues are detected in the spectrum towards AFGL 4176. The most abundant species is methanol (CH 3 OH) with a column density of 5.5 × 10 18 cm −2 in a beam of ~0.3′′, derived from its 13 C-isotopologue. The remaining species are present at levels between 0.003 and 15% with respect to methanol. Hints that N-bearing species peak slightly closer to the location of the peak continuum emission than the O-bearing species are seen. A single species, propyne (CH 3 C 2 H), displays a double-peaked distribution. Conclusions. AFGL 4176 comprises a rich chemical inventory including many complex species present on disc scales. On average, the derived column density ratios, with respect to methanol, of O-bearing species are higher than those derived for N-bearing species by a factor of three. This may indicate that AFGL 4176 is a relatively young source since nitrogen chemistry generally takes longer to evolve in the gas phase. Taking methanol as a reference, the composition of AFGL 4176 more closely resembles that of the low-mass protostar IRAS 16293–2422B than that of high-mass, star-forming regions located near the Galactic centre. This similarity hints that the chemical composition of complex species is already set in the cold cloud stage and implies that AFGL 4176 is a young source whose chemical composition has not yet been strongly processed by the central protostar.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 615 ( 2018-07), p. A88-
    Abstract: Context . The abundance of deuterated molecules in a star-forming region is sensitive to the environment in which they are formed. Deuteration fractions, in other words the ratio of a species containing D to its hydrogenated counterpart, therefore provide a powerful tool for studying the physical and chemical evolution of a star-forming system. While local low-mass star-forming regions show very high deuteration ratios, much lower fractions are observed towards Orion and the Galactic centre. Astration of deuterium has been suggested as a possible cause for low deuteration in the Galactic centre. Aims . We derive methanol deuteration fractions at a number of locations towards the high-mass star-forming region NGC 6334I, located at a mean distance of 1.3 kpc, and discuss how these can shed light on the conditions prevailing during its formation. Methods . We use high sensitivity, high spatial and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array to study transitions of the less abundant, optically thin, methanol-isotopologues: 13 CH 3 OH, CH 3 18 OH, CH 2 DOH and CH 3 OD, detected towards NGC 6334I. Assuming local thermodynamic equilibrium (LTE) and excitation temperatures of ~120–330 K, we derive column densities for each of the species and use these to infer CH 2 DOH/CH 3 OH and CH 3 OD/CH 3 OH fractions. Results . We derive column densities in a range of (0.8–8.3) × 10 17 cm −2 for 13 CH 3 OH, (0.13–3.4) × 10 17 cm −2 for CH 3 18 OH, (0.03–1.63) × 10 17 cm −2 for CH 2 DOH and (0.15–5.5) × 10 17 cm −2 for CH 3 OD in a ~1″ beam. Interestingly, the column densities of CH 3 OD are consistently higher than those of CH 2 DOH throughout the region by factors of 2–15. We calculate the CH 2 DOH to CH 3 OH and CH 3 OD to CH 3 OH ratios for each of the sampled locations in NGC 6334I. These values range from 0.03% to 0.34% for CH 2 DOH and from 0.27% to 1.07% for CH 3 OD if we use the 13 C isotope of methanol as a standard; using the 18 O-methanol as a standard, decreases the ratios by factors of between two and three. Conclusions . All regions studied in this work show CH 2 DOH/CH 3 OH as well as CH 2 DOH/CH 3 OD values that are considerably lower than those derived towards low-mass star-forming regions and slightly lower than those derived for the high-mass star-forming regions in Orion and the Galactic centre. The low ratios indicate a grain surface temperature during formation ~30 K, for which the efficiency of the formation of deuterated species is significantly reduced. Therefore, astration of deuterium in the Galactic centre cannot be the explanation for its low deuteration ratio but rather the high temperatures characterising the region.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 624 ( 2019-4), p. A82-
    Abstract: Context. In the search for the building blocks of life, nitrogen-bearing molecules are of particular interest since nitrogen-containing bonds are essential for the linking of amino acids and ultimately the formation of larger biological structures. The elusive molecule methylamine (CH 3 NH 2 ) is thought to be a key pre-biotic species but has so far only been securely detected in the giant molecular cloud Sagittarius B2. Aims. We identify CH 3 NH 2 and other simple nitrogen-bearing species involved in the synthesis of biologically relevant molecules towards three hot cores associated with the high-mass star-forming region NGC 6334I, located at a distance of 1.3 kpc. Column density ratios are derived in order to investigate the relevance of the individual species as precursors of biotic molecules. Methods. High sensitivity, high angular and spectral resolution observations obtained with the Atacama Large Millimeter/ submillimeter Array were used to study transitions of CH 3 NH 2 , CH 2 NH, NH 2 CHO, and the 13 C- and 15 N-methyl cyanide (CH 3 CN) isotopologues, detected towards NGC 6334I. Column densities are derived for each species assuming local thermodynamic equilibrium and excitation temperatures in the range 220–340 K for CH 3 NH 2 , 70–110 K for the CH 3 CN isotopologues and 120–215 K for NH 2 CHO and CH 2 NH. Results. We report the first detections of CH 3 NH 2 towards NGC 6334I with column density ratios with respect to CH 3 OH of 5.9 × 10 −3 , 1.5 × 10 −3 and 5.4 × 10 −4 for the three hot cores MM1, MM2, and MM3, respectively. These values are slightly lower than the values derived for Sagittarius B2 but higher by more than an order of magnitude as compared with the values derived for the low-mass protostar IRAS 16293–2422B. The column density ratios of NH 2 CHO, 13 CH 3 CN, and CH 3 C 15 N with respect to CH 3 OH are (1.5 – 1.9) × 10 −4 , (1.0 – 4.6) × 10 −3 and (1.7 – 3.0) × 10 −3 respectively. Lower limits of 5.2, 1.2, and 3.0 are reported for the CH 3 NH 2 to CH 2 NH column density ratio for MM1, MM2, and MM3 respectively. These limits are largely consistent with the values derived for Sagittarius B2 and higher than those for IRAS 16293–2422B. Conclusions. The detections of CH 3 NH 2 in the hot cores of NGC 6334I hint that CH 3 NH 2 is generally common in the interstellar medium, albeit that high-sensitivity observations are essential forthe detection of the species. The good agreement between model predictions of CH 3 NH 2 ratios and the observations towards NGC 6334I indicate a main formation pathway via radical recombination on grain surfaces. This process may be stimulated further by high grain temperatures allowing a lager degree of radical mobility. Further observations with ALMA will help evaluate the degree to which CH 3 NH 2 chemistry depends on the temperature of the grains in high- and low-mass star-forming regions respectively.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    EDP Sciences ; 2017
    In:  Astronomy & Astrophysics Vol. 604 ( 2017-8), p. A131-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 604 ( 2017-8), p. A131-
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...