GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proteins: Structure, Function, and Bioinformatics, Wiley, Vol. 71, No. 1 ( 2008-04), p. 308-319
    Abstract: dUTP pyrophosphatase, a preventive DNA repair enzyme, contributes to maintain the appropriate cellular dUTP/dTTP ratio by catalyzing dUTP hydrolysis. dUTPase is essential for viability in bacteria and eukaryotes alike. Identification of species‐specific antagonists of bacterial dUTPases is expected to contribute to the development of novel antimicrobial agents. As a first general step, design of dUTPase inhibitors should be based on modifications of the substrate dUTP phosphate chain, as modifications in either base or sugar moieties strongly impair ligand binding. Based on structural differences between bacterial and human dUTPases, derivatization of dUTP‐analogous compounds will be required as a second step to invoke species‐specific character. Studies performed with dUTP analogues also offer insights into substrate binding characteristics of this important and structurally peculiar enzyme. In this study, α,β‐methylene‐dUDP was synthesized and its complex with dUTPase was characterized. Enzymatic phosphorylation of this substrate analogue by pyruvate kinase was not possible in contrast to the successful enzymatic phosphorylation of α,β‐imino‐dUDP. One explanation for this finding is that the different bond angles and the presence of the methylene group may preclude formation of a catalytically competent complex with the kinase. Crystal structure of E. coli dUTPase:α,β‐methylene‐dUDP and E. coli dUTPase:dUDP:Mn complexes were determined and analyzed in comparison with previous data. Results show that the “trans” α‐phosphate conformation of α,β‐methylene‐dUDP differs from the catalytically competent “gauche” α‐phosphate conformation of the imino analogue and the oxo substrate, manifested in the shifted position of the α‐phosphorus by more than 3 Å. The three‐dimensional structures determined in this work show that the binding of the methylene analogue with the α‐phosphorus in the “gauche” conformation would result in steric clash of the methylene group with the protein atoms. In addition, the metal ion cofactor was not bound in the crystal of the complex with the methylene analogue while it was clearly visible as coordinated to dUDP, arguing that the altered phosphate chain conformation also perturbs metal ion complexation. Isothermal calorimetry titrations indicate that the binding affinity of α,β‐methylene‐dUDP toward dUTPase is drastically decreased when compared with that of dUDP. In conclusion, the present data suggest that while α,β‐methylene‐dUDP seems to be practically nonhydrolyzable, it is not a strong binding inhibitor of dUTPase probably due to the altered binding mode of the phosphate chain. Results indicate that in some cases methylene analogues may not faithfully reflect the competent substrate ligand properties, especially if the methylene hydrogens are in steric conflict with the protein. Proteins 2008. © 2007 Wiley‐Liss, Inc.
    Type of Medium: Online Resource
    ISSN: 0887-3585 , 1097-0134
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2008
    detail.hit.zdb_id: 1475032-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: eLife, eLife Sciences Publications, Ltd, Vol. 9 ( 2020-09-21)
    Abstract: Numerous anti-cancer drugs perturb thymidylate biosynthesis and lead to genomic uracil incorporation contributing to their antiproliferative effect. Still, it is not yet characterized if uracil incorporations have any positional preference. Here, we aimed to uncover genome-wide alterations in uracil pattern upon drug treatments in human cancer cell line models derived from HCT116. We developed a straightforward U-DNA sequencing method (U-DNA-Seq) that was combined with in situ super-resolution imaging. Using a novel robust analysis pipeline, we found broad regions with elevated probability of uracil occurrence both in treated and non-treated cells. Correlation with chromatin markers and other genomic features shows that non-treated cells possess uracil in the late replicating constitutive heterochromatic regions, while drug treatment induced a shift of incorporated uracil towards segments that are normally more active/functional. Data were corroborated by colocalization studies via dSTORM microscopy. This approach can be applied to study the dynamic spatio-temporal nature of genomic uracil.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2020
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2003
    In:  Proceedings of the National Academy of Sciences Vol. 100, No. 10 ( 2003-05-13), p. 5670-5675
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 10 ( 2003-05-13), p. 5670-5675
    Abstract: The metal ion dependence of the catalytic activity of recombinant Escherichia coli dUTP pyrophosphatase (dUTPase), an essential enzyme preventing incorporation of uracil into DNA, has been investigated by steady-state kinetic, electron paramagnetic resonance, and electron nuclear double resonance methods. Values of k cat and k cat / K m were 4.5 ± 0.1 s −1 and 0.49 ± 0.1 × 10 6 M −1 ⋅s −1 in the absence of divalent metal ions, 14.7 ± 2.2 s −1 and 25.1 ± 7.4 × 10 6 M −1 ⋅s −1 in the presence of Mg 2+ or Mn 2+ , and 24.2 ± 3.6 s −1 and 2.4 ± 0.7 × 10 6 M −1 ⋅s −1 when supported by VO 2+ or bis(acetylacetonato)oxovanadium(IV). Binding of VO 2+ to the enzyme in the presence of dUDP, a nonhydrolyzable substrate analog, was specific and competitive with Mg 2+ . Electron paramagnetic resonance spectra of the ternary enzyme–VO 2+ -chelate–dUDP complex revealed a pattern of 31 P superhyperfine coupling specifying two structurally equivalent phosphate groups equatorially coordinated to the VO 2+ ion. Proton electron nuclear double resonance spectra revealed an equatorial acetylacetonate ligand, indicating that one of the organic ligands had been displaced. By molecular graphics modeling, we show that the diphosphate group of enzyme-bound dUDP is sterically accessible to a hemi-chelate form of VO 2+ . We propose a similar location compatible with all kinetic and spectroscopic results to account for the reactivity of VO 2+ and the VO 2+ -chelate in dUTP hydrolysis. In this location the metal ion could promote an ordered conformation of the C-terminal fragment that is obligatory for catalysis but dynamically flexible in the free enzyme.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 279, No. 21 ( 2004-05), p. 22362-22370
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2004
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-04-01)
    Abstract: Crosstalk between cellular pathways is often mediated through scaffold proteins that function as platforms for the assembly of signaling complexes. Based on yeast two-hybrid analysis, we report here the interaction between two complex scaffold proteins, CREB-binding protein (CBP) and the Ras GTPase-activating-like protein 1 (IQGAP1). Dissection of the interaction between the two proteins reveals that the central, thus far uncharacterized, region of IQGAP1 interacts with the HAT domain and the C-terminal intrinsically disordered region of CBP (termed ID5). Structural analysis of ID5 by solution NMR spectroscopy and SAXS reveals the presence of two regions with pronounced helical propensity. The ID5 region(s) involved in the interaction of nanomolar affinity were delineated by solution NMR titrations and pull-down assays. Moreover, we found that IQGAP1 acts as an inhibitor of the histone acetyltransferase (HAT) activity of CBP. In in vitro assays, the CBP-binding region of IQGAP1 positively and negatively regulates the function of HAT proteins of different families including CBP, KAT5 and PCAF. As many signaling pathways converge on CBP and IQGAP1, their interaction provides an interface between transcription regulation and the coordination of cytoskeleton. Disruption or alteration of the interaction between these scaffold proteins may lead to cancer development or metastatic processes, highlighting the importance of this interaction.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 2 ( 2022-01-06), p. 633-
    Abstract: The clonal composition of a malignant tumor strongly depends on cellular dynamics influenced by the asynchronized loss of DNA repair mechanisms. Here, our aim was to identify founder mutations leading to subsequent boosts in mutation load. The overall mutation burden in 591 colorectal cancer tumors was analyzed, including the mutation status of DNA-repair genes. The number of mutations was first determined across all patients and the proportion of genes having mutation in each percentile was ranked. Early mutations in DNA repair genes preceding a mutational expansion were designated as founder mutations. Survival analysis for gene expression was performed using microarray data with available relapse-free survival. Of the 180 genes involved in DNA repair, the top five founder mutations were in PRKDC (n = 31), ATM (n = 26), POLE (n = 18), SRCAP (n = 18), and BRCA2 (n = 15). PRKDC expression was 6.4-fold higher in tumors compared to normal samples, and higher expression led to longer relapse-free survival in 1211 patients (HR = 0.72, p = 4.4 × 10−3). In an experimental setting, the mutational load resulting from UV radiation combined with inhibition of PRKDC was analyzed. Upon treatments, the mutational load exposed a significant two-fold increase. Our results suggest PRKDC as a new key gene driving tumor heterogeneity.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-07-05)
    Abstract: The multi-domain transcriptional coactivators CBP/p300 integrate a multitude of signaling inputs, interacting with more than 400 proteins via one or more of their globular domains. While CBP/p300 function is typically considered in terms of these structured domains, about half of the protein consists of intrinsically disordered regions (IDRs) of varying length. However, these IDRs have only been thought of as linkers that allow flexible spatial arrangement of the structured domains, but recent studies have shown that similar IDRs mediate specific and critical interactions in other proteins. To examine the roles of IDRs in CBP, we performed yeast-two-hybrid screenings of placenta and lung cancer cDNA libraries, which demonstrated that the long IDR linking the KIX domain and bromodomain of CBP (termed ID3) can potentially bind to several proteins. The RNA-binding Zinc-finger protein 106 (ZFP106) detected in both libraries was identified as a novel substrate for CBP-mediated acetylation. Nuclear magnetic resonance (NMR) spectroscopy combined with cross-linking experiments and competition-binding assays showed that the fully disordered isolated ID3 transiently interacts with an IDR of ZFP106 in a fashion that disorder of both regions is maintained. These findings demonstrate that beside the linking function, ID3 can also interact with acetylation substrates of CBP.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Molecular Biosciences, Frontiers Media SA, Vol. 5 ( 2018-9-4)
    Type of Medium: Online Resource
    ISSN: 2296-889X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2018
    detail.hit.zdb_id: 2814330-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 279, No. 17 ( 2004-04), p. 17932-17944
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2004
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The FEBS Journal, Wiley, Vol. 283, No. 18 ( 2016-09), p. 3268-3286
    Abstract: Deoxyuridine 5′‐triphosphate nucleotidohydrolase (dUTPase) is essential for genome integrity. Interestingly, this enzyme from Drosophila virilis has an unusual form, as three monomer repeats are merged with short linker sequences, yielding a fused trimer‐like dUTPase fold. Unlike homotrimeric dUTPases that are encoded by a single repeat dut gene copy, the three repeats of the D. virilis dut gene are not identical due to several point mutations. We investigated the potential evolutionary pathway that led to the emergence of this extant fused trimeric dUTPase in D. virilis . The herein proposed scenario involves two sequential gene duplications followed by sequence divergence amongst the dut repeats. This pathway thus requires the existence of a transient two‐repeat‐containing fused dimeric dUTPase intermediate. We identified the corresponding ancestral dUTPase single repeat enzyme together with its tandem repeat evolutionary intermediate and characterized their enzymatic function and structural stability. We additionally engineered and characterized artificial single or tandem repeat constructs from the extant enzyme form to investigate the influence of the emergent residue alterations on the formation of a functional assembly. The observed severely impaired stability and catalytic activity of these latter constructs provide a plausible explanation for evolutionary persistence of the extant fused trimeric D. virilis dUTPase form. For the ancestral homotrimeric and the fused dimeric intermediate forms, we observed strong catalytic and structural competence, verifying viability of the proposed evolutionary pathway. We conclude that the progression along the herein described evolutionary trajectory is determined by the retained potential of the enzyme for its conserved three‐fold structural symmetry.
    Type of Medium: Online Resource
    ISSN: 1742-464X , 1742-4658
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2172518-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...