GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 9292-9293
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 138, No. 25 ( 2021-12-23), p. 2655-2669
    Abstract: Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor–like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB–treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB–treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia, Springer Science and Business Media LLC, Vol. 35, No. 8 ( 2021-08), p. 2243-2257
    Abstract: Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33 + and CD123 + AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 4450-4450
    Abstract: Antibody-based immunotherapy represents a promising strategy to target chemo-resistant leukemic cells. However, current antibody-based approaches are restricted to cell lineage surface antigens. Targeting intracellular antigens enables to enlarge the number of suitable tumor-associated target antigens with a more restricted expression profile. In this study we evaluated a 2+1 T Cell Bispecific (TCB) antibody for immunotherapy of acute myeloid leukemia (AML). The T cell receptor (TCR)-like TCB targets the intracellular tumor antigen Wilms tumor 1 (WT1) by bivalent recognition of the peptide RMFPNAPYL in the context of human leukocyte antigen allele A*02 (HLA-A2). Complementary binding to CD3ε recruits T cells irrespective of their TCR-specificity. We further analyzed enhancement of TCB-mediated T cell cytotoxicity through combination with the immune-modulatory drug lenalidomide. WT1 expression levels in cancer cell lines and primary AML patient samples at different time points during course of the disease were determined by quantitative real-time PCR, western blot and immunohistochemical staining. WT1-TCB-mediated cytotoxicity was analyzed by co-cultivation of WT1-expressing HLA-A2+ cancer cell lines with T cells from healthy donors. Specific lysis was assessed by flow cytometry. TCR downstream signaling was measured by co-cultivation of primary AML cells with NFAT Luciferase Reporter Jurkat cells. WT1-TCB-mediated cytotoxicity against primary AML cells and combination with 10 μM lenalidomide was evaluated in our pre-established feeder layer-based ex vivo long-term culture system. For in vivo testing, NSG mice (NOD.Cg-Prkdcscid-Il2rgtm1Wjl/SzJ) were humanized with human HLA-A2+ CD34+ cord blood cells. After successful engraftment and development of human T cells, WT1-expressing HLA-A2+ SKM-1 tumor cells were subcutaneously inoculated followed by weekly administration of the WT1-TCB. In accordance with previous reports, we observed WT1 expression in 79% (n=38) of cancer cell lines and in 92% (n=65) of AML patient samples at the time of initial diagnosis. Moreover, WT1 expression levels correlated with the percentage of AML blasts: no significant WT1 expression was observed at time of CR (n=26), whereas WT1 was expressed again at time of relapse (n=21). WT1-TCBs elicited antibody-mediated T cell cytotoxicity against peptide-pulsed T2 cells and AML cell lines in a WT1 and HLA-restricted manner. Equally, TCR downstream signaling was observed in a WT1-restrictive manner by co-cultivation of primary AML cells with NFAT Luciferase Reporter Jurkat cells. WT1-TCBs further mediated specific lysis of primary AML cells upon addition of allogenic T cells from healthy donors (mean specific lysis: 67±6% after 13-14 days; ±SEM; n=18). Correspondingly, up-regulation of T cell activation and surrogate exhaustion markers was observed (MFI fold change CD69: 9.3±1.5, PD-1: 5.1±0.7, TIM-3: 4.7±0.6; ±SEM; n=22). WT1-TCBs also mediated killing of primary AML cells in an autologous setting (mean specific lysis: 38±13% after 13-14 days; ±SEM; n=5). In comparison with WT1RMF-specific T cells, only bivalent binding by WT1-TCB induced efficient lysis of primary AML cells. Interestingly, combination of WT1-TCB with lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean specific lysis on day 3-4: 32±10% vs 59±9%; p=0.0017; ±SEM; n=13). This was accompanied by an increased secretion of the proinflammatory cytokines IL-2, IFN-γ and TNF-α and promoted the differentiation of naïve T cells towards a memory phenotype characterized by a downregulation of CD45RA. Furthermore, WT1-TCB-treated humanized mice bearing SKM-1 tumors showed a dose dependent and significant reduction in tumor growth resulting in tumor control. TCR-like TCBs targeting intracellular tumor antigens are a promising tool for cancer immunotherapy. Notably, the 2+1 TCB molecular format for bivalent binding facilitates potent in vitro, ex vivo and in vivo killing of AML cell lines and primary AML samples which present low numbers of the RMF peptide-MHC complex on the cell surface validating WT1-TCB as a promising therapeutic agent for the treatment of AML. Our results further indicate that the combinatorial approach with lenalidomide leads to increased TCB-mediated T cell cytotoxicity. Disclosures Klein: Roche: Employment, Equity Ownership, Patents & Royalties. Xu:Roche: Employment, Equity Ownership, Patents & Royalties. Heitmüller:Roche: Employment. Hanisch:Roche: Employment, Equity Ownership, Patents & Royalties. Sam:Roche: Employment, Equity Ownership, Patents & Royalties. Pulko:Roche: Employment, Equity Ownership, Patents & Royalties. Schönle:Roche: Employment, Equity Ownership, Patents & Royalties. Challier:Roche: Employment, Equity Ownership, Patents & Royalties. Carpy:Roche: Employment, Equity Ownership, Patents & Royalties. Lichtenegger:Roche: Employment. Umana:Roche: Employment, Equity Ownership, Patents & Royalties. Subklewe:Roche: Consultancy, Research Funding; Miltenyi: Research Funding; Oxford Biotherapeutics: Research Funding; Morphosys: Research Funding; Gilead: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria; AMGEN: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Janssen: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Transplantation and Cellular Therapy, Elsevier BV, Vol. 29, No. 2 ( 2023-02), p. S11-S12
    Type of Medium: Online Resource
    ISSN: 2666-6367
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 3056525-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2544-2544
    Abstract: Background: Despite considerable advances in the development of novel strategies for the treatment of acute myeloid leukemia (AML) the relapse rate is still high with only limited treatment options. Relapse occurs due to the persistence of chemotherapy-resistant leukemic stem cells (LSCs), which re-initiate outgrowth of the disease, highlighting the need of targeting LSCs to improve overall survival. Immunotherapies represent a promising strategy to target chemotherapy-resistant LSCs in AML. LSCs are characterized by the expression of the interleukin-3 receptor α, also known as CD123. CD123 is expressed on AML blasts and LSCs, and shows only a moderate expression on normal hematopoietic stem cells, claiming CD123 as a suitable target antigen (Haubner et al, Leukemia 2019). CD47, known as a marker of self, is also highly expressed on LSCs as immune escape mechanism. CD47 transmits a "don't eat me" signal upon its interaction with the myeloid-specific signal regulatory protein alpha (SIRPα) receptor on macrophages, thus inhibiting phagocytosis. In order to efficiently eliminate LSCs and provide AML patients a possibility for prolonged relapse-free survival, we have designed a bifunctional antibody that specifically targets CD123 and simultaneously blocks CD47. Importantly, our strategy restricts the benefits of the CD47 blockade to CD123 positive AML cells. Thus, we hypothesize a lower risk for on-target off-leukemia toxicity. Methods: The bifunctional SIRPα-CD123 antibody was generated by fusing the endogenous extracellular domain of SIRPα, which functions as the CD47 blocking domain, to an CD123 antibody CD123. We assessed the selective binding of the bifunctional antibody to CD123+CD47+ AML-derived cells and the ability to block CD47 on CD123+ cells in vitro. Furthermore, the biological activity of the SIRPα-CD123 antibody was examined using the AML-derived cell line MOLM-13, patient-derived xenografted (PDX) AML cells as well as primary cells from patients with newly diagnosed or relapsed AML. Results: We engrafted the endogenous SIRPα V-like domain to an antibody targeting CD123, which improved the binding of the bifunctional SIRPα-CD123 antibody to AML cells compared to a conventional CD123 antibody (MFI ratioCD123 = 2.46 0.25 vs MFI ratioSIRPα-CD123 = 4.44 0.60). The SIRPα-CD123 antibody enhanced the elimination of the AML-derived MOLM-13 cells by antibody-dependent cellular cytotoxicity (EC50CD123 = 38.5 pM vs EC50SIRPα-CD123 = 10.1 pM, n = 9). Additionally, the cytotoxicity was confirmed using primary patient-derived AML cells ex vivo. Further, an improved ex vivo cytotoxicity towards AML PDX cells was observed with the SIRPα-CD123 antibody (% lysis at 100 nM: 14.27 5.40 vs 42.94 10.21 for CD123 and SIRPα-CD123 antibodies respectively, n = 3). With regards to the inhibition of CD47 signaling, we were able to show a blockade of CD47 on CD123+CD47+ positive cells by the SIRPα-CD123 antibody. Correspondingly, a significant increase in phagocytosis of primary patient-derived AML cells mediated by monocyte-derived macrophages was observed in allogenic as well as autologous settings (% phagocytosis, normalized to isotype control and maximum phagocytosis in an autologous setting: 20.11 4.59 vs 90.37 6.22, n = 5 for CD123 and SIRPα-CD123 antibodies, respectively). We were further able to show a preferential binding to MOLM-13 in the presence of a 20-fold excess of red blood cells indicating a potential low on-target off-leukemia toxicity. Taken together, our in vitro data supports the elimination of the CD123+CD47+ positive AML LSC compartment by a synergistic effect of avidity-dependent binding to CD123 and CD47 and the simultaneous inhibition of the innate immune CD47-SIRPα signaling pathway. Conclusions: The SIRPα-CD123 is a bifunctional antibody with the potential to deplete CD123+CD47+ AML LSCs by a dual mode of action mechanism resulting in NK cell dependent cytotoxicity and macrophage-mediated phagocytosis. By combining a high affinity binding to CD123+ cells and a low affinity CD47 blockade that is restricted to CD123+ cancer cells we effectively minimize the risk for CD47-related on-target off-leukemia toxicity. The results of our in vitro assays using AML cell lines are consistent with the data from PDX and primary AML samples and support further preclinical testing of the SIRPα-CD123 antibody in vivo. Disclosures Subklewe: Miltenyi: Research Funding; Pfizer: Consultancy, Honoraria; Gilead: Consultancy, Honoraria, Research Funding; AMGEN: Consultancy, Honoraria, Research Funding; Oxford Biotherapeutics: Research Funding; Roche: Consultancy, Research Funding; Celgene: Consultancy, Honoraria; Morphosys: Research Funding; Janssen: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 764-764
    Abstract: Postremission therapy is critical for successful elimination of minimal residual disease (MRD) in acute myeloid leukemia (AML). Innovative treatment options are needed for patients that are not eligible for allogeneic stem cell transplantation. As the intrinsic immune response against leukemia-associated antigens (LAAs) is generally low, the clinical application of checkpoint inhibitors as monotherapy is less promising in AML compared to other hemato-oncological diseases. Therapeutic vaccination with autologous dendritic cells (DCs) loaded with LAAs is a promising treatment strategy to induce anti-leukemic immune responses. We have conducted a phase I/II proof-of-concept study using monocyte-derived next-generation DCs as postremission therapy of AML patients with a non-favorable risk profile in CR/CRi after intensive induction therapy (NCT01734304). These DCs are generated using a GMP-compliant 3-day protocol including a TLR7/8 agonist, loaded with RNA encoding the LAAs WT1 and PRAME as well as CMVpp65 as adjuvant/surrogate antigen, and are applied intradermally up to 10 times within 26 weeks. The primary endpoint of the trial is feasibility and safety of the vaccination. Secondary endpoints are immunological responses and disease control. After the safety and toxicity profile was evaluated within phase I (n=6), the patient cohort was expanded to a total of 13 patients. DCs of sufficient number and quality could be generated from leukapheresis in 11/12 cases. DCs exhibited an immune-stimulatory profile based on high costimulatory molecule expression, IL-12p70 secretion, migration towards a chemokine gradient and processing and presentation of antigen. In 9/9 patients that are currently evaluable, we observed delayed-type hypersensitivity (DTH) responses at the vaccination site, but no grade III/IV toxicities. TCR repertoire analysis by next-generation sequencing revealed an enrichment of particular clonotypes at DTH sites. In the peripheral blood, we detected vaccination-specific T cell responses by multimer staining and by ELISPOT analysis: 7/7 patients showed responses to CMVpp65, including both boosting of pre-existing T cells in CMV+ patients and induction of a primary T cell response in CMV- patients. 2/7 patients exhibited responses to PRAME and WT each. 7/10 vaccinated patients are still alive, and 5/10 are in CR, with an observation period of up to 840 days. In vitro, DC-activated T cells showed an upregulation of PD-1 and LAG-3, while the DCs expressed the respective ligands PD-L1 and HLA-DR. Therefore, we studied the capacity of checkpoint blocking antibodies to further enhance T-cell activation by DCs. We found that blockade of PD-1 and particularly of LAG-3 was highly effective in enhancing both IFN-γ secretion and proliferation of T cells. Both pathways seem to target different T-cell subsets, as PD-1 blockade resulted in increased IFN-γ secretion by TN- and TEM-subsets, while blockade of LAG-3 significantly affected TN- and TCM-subsets. We conclude that vaccination with next-generation LAA-expressing DCs in AML is feasible, safe, and induces anti-leukemic immune responses in vivo. Our in vitro data supports the hypothesis that T-cell activation by means of the vaccine could be further enhanced by blocking PD-1 and/or LAG-3. Disclosures Subklewe: AMGEN Research Munich: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 4, No. 11_Supplement ( 2016-11-01), p. B002-B002
    Abstract: Postremission therapy for acute myeloid leukemia (AML) is critical for elimination of minimal residual disease (MRD). In patients not eligible for allogeneic stem cell transplantation, alternative treatment options are needed. Therapeutic vaccination with autologous dendritic cells (DCs) loaded with leukemia-associated antigens (LAAs) is a promising treatment strategy to induce anti-leukemic immune responses and to eradicate chemorefractory cells. Using a TLR7/8 agonist, we have developed a GMP-compliant 3-day protocol to differentiate monocytes of intensively pretreated AML patients into highly functional, therapeutic DCs. A phase I/II proof-of-concept study has been initiated using TLR7/8-matured DCs as postremission therapy of AML patients with a non-favorable risk profile in CR or CRi after intensive induction therapy (NCT01734304). DCs have been loaded with in vitro transcribed RNA encoding the LAAs WT1 and PRAME as well as CMVpp65 as adjuvant and surrogate antigen. Patients have been vaccinated intradermally with 5×106 DCs of each antigen species up to 10 times within 26 weeks. The primary endpoint of the phase I/II trial is feasibility and safety of the vaccination. Secondary endpoints are immunological responses and disease control. In total, 13 patients have been enrolled into the study. The first 6 patients were analysed in phase I for safety and toxicity of the DC vaccine. No higher grade toxicities were observed during their treatment and hence phase II has been initiated. DCs of sufficient number and quality were generated from leukapheresis in 10/11 cases. DCs exhibited an immune-stimulatory profile based on high surface expression of positive costimulatory molecules, the capacity to secrete IL-12p70, the migration towards a chemokine gradient and processing and presentation of antigen. In 9/9 vaccinated patients, we observed delayed-type hypersensitivity (DTH) responses at the vaccination site, accompanied by slight erythema and indurations at the injection site, but no grade III/IV toxicities. TCR repertoire analysis by NGS revealed an enrichment of particular clonotypes at DTH sites. In addition, we detected vaccine-specific T-cell responses by multimer staining and by Interferon-gamma-ELISPOT analysis: 7/7 patients showed responses to CMVpp65 and 2/7 exhibited responses to PRAME and WT1, respectively. In an individual treatment attempt, an enrolled patient with impending relapse was treated with a combination of DC vaccination and 5-azacytidine, resulting in MRD conversion. Long-term disease control and immunological responses are studied in the ongoing phase II trial. We conclude that vaccination with TLR7/8-matured, LAA-expressing DCs in AML is feasible, safe and induces anti-leukemia-specific immune responses in vivo. Citation Format: Katrin Deiser, Felix S. Lichtenegger, Frauke M. Schnorfeil, Thomas Köhnke, Torben Altmann, Veit Bücklein, Christian Augsberger, Andreas Moosmann, Monika Brüggemann, Mirjam HM Heemskerk, Beate Wagner, Wolfgang Hiddemann, Iris Bigalke, Gunnar Kvalheim, Marion Subklewe. TLR7/8-matured dendritic cells for therapeutic vaccination in AML: Results of a clinical Phase I/II trial [abstract]. In: Proceedings of the Second CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; 2016 Sept 25-28; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(11 Suppl):Abstract nr B002.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Elsevier BV ; 2011
    In:  Molecular Cell Vol. 42, No. 2 ( 2011-04), p. 261-266
    In: Molecular Cell, Elsevier BV, Vol. 42, No. 2 ( 2011-04), p. 261-266
    Type of Medium: Online Resource
    ISSN: 1097-2765
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2011
    detail.hit.zdb_id: 2001948-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 44-45
    Abstract: Introduction Tafasitamab (MOR208) is a CD19-targeting, Fc effector function-enhanced antibody that has shown promising clinical activity in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL). For patients newly-diagnosed with DLBCL, R-CHOP regimens combining the anti-CD20 antibody, rituximab (RTX) with chemotherapy is the standard of care; however, 30-40% of patients experience relapse with a high mortality rate. CD20 is not as broadly expressed as CD19 on B-cell lymphomas, and CD19 expression is preserved on CD20-negative tumor sub-populations and following CD20-targeting therapy (Horna, et al. EHA 2020). These findings support the evaluation of immunotherapies combining anti-CD19 and anti-CD20 antibodies to target all malignant lymphoma cells. To further explore the rationale for adding tafasitamab to a RTX-containing regimen, we analyzed the effect of this combination on antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and tumor B-cell viability in vitro. Additionally, protein expression of the oncogenic transcription factor c-Myc was investigated to gain deeper insight into the molecular effects mediated by RTX and tafasitamab. Methods A comprehensive panel of 11 aggressive lymphoma cell lines was analyzed (9 DLBCL and 2 Burkitt's lymphoma). For the ADCC assays, tumor cells were incubated with tafasitamab and/or RTX at saturating concentrations in the presence of natural killer cells from healthy human donors at effector-to-target (E:T) ratios of 0.5:1 to 3:1 for 2 hours. Cytotoxicity was assessed by quantification of DAPI-positive, CFSE-labeled target cells. For the ADCP assays, lymphoma cells were incubated with tafasitamab and/or RTX at saturating concentrations in the presence of in vitro differentiated macrophages derived from healthy human donors at an E:T ratio of 2:1 for 3 hours. Phagocytosis was assessed by quantification of double-positive events (CFSE-labeled macrophages and CellTrace Violet-stained target cells). C-Myc protein levels were measured following the treatment of tumor cells with tafasitamab and/or RTX for 17-48 hours. CD19/CD20 surface expression, ADCC and ADCP rates, as well as intracellular c-Myc protein levels were analyzed by flow cytometry. Direct effects of antibody treatment on cell viability were assessed by the determination of ATP levels upon incubation of lymphoma cells for 24-96 hours. Results Increased ADCC activity for the combination of tafasitamab and RTX compared with the respective monotherapies was observed in 4/11 cell lines. For the remaining cell lines, the combination activity was similar to the most active monotherapy (tafasitamab: 5/11, RTX: 2/11). Furthermore, in 5/11 cell lines, the combination of tafasitamab and RTX resulted in enhanced ADCP activity compared with the monotherapies. Similar to ADCC, the combination activity in the other cell lines was comparable to the most active monotherapy (tafasitamab: 2/11, RTX: 4/11). Interestingly, a slight correlation between ADCC/ADCP activity and CD19/CD20 surface expression levels was observed. Treatment of tumor cells with the respective antibodies without effector cells showed a beneficial combinatorial effect of tafasitamab with RTX on the reduction of cell viability in 3/8 cell lines, whereas 2 cell lines were primarily sensitive to tafasitamab and 3 were sensitive to RTX. This observed difference in the activity profile of tafasitamab versus RTX suggests different mechanisms for induction of direct cytotoxicity (Figure 1). To further elucidate the molecular basis of the observed direct effects on cell proliferation, expression levels of c-Myc were assessed. A correlation between decreased cell viability and reduction of c-Myc expression was demonstrated. This finding is in line with the role of c-Myc in the regulation of cellular processes, such as proliferation and apoptosis. Conclusions The co-treatment of tafasitamab with RTX demonstrated superiority compared with the respective monotherapies for at least one and up to all three of the modes of action tested (ADCC, ADCP, or direct impact on cell viability) in 9/11 lymphoma cell lines. These data demonstrate that the combination of tafasitamab and RTX mediates increased tumor cell death in vitro via different mechanisms of action and support the clinical evaluation of this antibody combination in patients with DLBqCL. Disclosures Patra: MorphoSys AG: Current Employment. Augsberger:MorphoSys AG: Current Employment. Ginzel:MorphoSys AG: Current Employment. Polzer:MorphoSys AG: Current Employment. Landgraf:MorphoSys AG: Current Employment. Bartel:MorphoSys AG: Current Employment. Ness:MorphoSys AG: Current Employment. Steidl:MorphoSys AG: Current Employment. Heitmüller:MorphoSys AG: Current Employment. Schanzer:MorphoSys AG: Current Employment. Endell:Morphosys: Current Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...