GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 15, No. 13 ( 2022-07-05), p. 3941-3967
    Abstract: Abstract. The change of the global climate is most pronounced in the Arctic, where the air temperature increases 2 to 3 times faster than the global average. This process is associated with an increase in the concentration of greenhouse gases in the atmosphere. There are publications predicting the sharp increase in methane emissions into the atmosphere due to permafrost thawing. Therefore, it is important to study how the air composition in the Arctic changes in the changing climate. In the Russian sector of the Arctic, the air composition was measured only in the surface atmospheric layer at the coastal stations or earlier at the drifting stations. Vertical distributions of gas constituents of the atmosphere and aerosol were determined only in a few small regions. That is why the integrated experiment was carried out to measure the composition of the troposphere in the entire Russian sector of the Arctic from on board the Optik Tu-134 aircraft laboratory in the period of ​​​​​​​4 to 17 September of 2020. The aircraft laboratory was equipped with contact and remote measurement facilities. The contact facilities were capable of measuring the concentrations of CO2, CH4, O3, CO, NOx​​​​​​​, and SO2, as well as the disperse composition of particles in the size range from 3 nm to 32 µm, black carbon, and organic and inorganic components of atmospheric aerosol. The remote facilities were operated to measure the water transparency in the upper layer of the ocean, the chlorophyll content in water, and spectral characteristics of the underlying surface. The measured data have shown that the ocean continues absorbing CO2. This process is most intense over the Barents and Kara seas. The recorded methane concentration was increased over all the Arctic seas, reaching 2090 ppb in the near-water layer over the Kara Sea. The contents of other gas components and black carbon were close to the background level. In bioaerosol, bacteria predominated among the identified microorganisms. In most samples, they were represented by coccal forms, less often spore-forming and non-spore-bearing rod-shaped bacteria. No dependence of the representation of various bacterial genera on the height and the sampling site was revealed. The most turbid during the experiment was the upper layer of the Chukchi and Bering seas. The Barents Sea turned out to be the most transparent. The differences in extinction varied by more than a factor of 1.5. In all measurements, except for the Barents Sea, the tendency of an increase in chlorophyll fluorescence in more transparent waters was observed.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 29, No. 1 ( 2012-01-01), p. 64-75
    Abstract: The scientific instrumental complex of the Optik-É AN-30 aircraft laboratory developed at the Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences is described in detail. Specifications of the main units of the instrumental complex are presented. Special attention is given to the metrological support of measurements of the atmospheric parameters. Experimental capabilities of the aircraft laboratory are illustrated by the results obtained in recent flights over various regions of the Russian Federation.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Fire, MDPI AG, Vol. 6, No. 3 ( 2023-03-15), p. 122-
    Abstract: In 2019, the southern region of Eastern Siberia (located between 45° N and 60° N) experienced heavy floods, while the northern region (between 60° N and 75° N) saw intense forest fires that lasted for almost the entire summer, from 25 June to 12 August. To investigate the causes of these natural disasters, we analyzed the large-scale features of atmospheric circulation, specifically the Rossby wave breaking and atmospheric blocking events. In the summer of 2019, two types of Rossby wave breaking were observed: a cyclonic type, with a wave breaking over Siberia from the east (110° E–115° E), and an anticyclonic type, with a wave breaking over Siberia from the west (75° E–90° E). The sequence of the Rossby wave breaking and extreme weather events in summer, 2019 are as follows: 24–26 June (cyclonic type, extreme precipitation, flood), 28–29 June and 1–2 July (anticyclonic type, forest fires), 14–17 July (both types of breaking, forest fires), 25–28 July (cyclonic type, extreme precipitation, flood), 2 and 7 August (anticyclonic type, forest fires). Rossby wave breaking occurred three times, resulting in the formation and maintenance of atmospheric blocking over Eastern Siberia: 26 June–3 July, 12–21 July and 4–10 August. In general, the scenario of the summer events was as follows: cyclonic Rossby wave breaking over the southern part of Eastern Siberia (45° N–60° N) caused extreme precipitation (floods) and led to low gradients of potential vorticity and potential temperature in the west and east of Lake Baikal. The increased wave activity flux from the Europe–North Atlantic sector caused the anticyclonic-type Rossby wave breaking to occur west of the area of a low potential vorticity gradient and north of 60° N. This, in turn, contributed to the maintenance of blocking anticyclones in the north of Eastern Siberia, which led to the intensification and expansion of the area of forest fires. These events were preceded by an increase in the amplitude of the quasi-stationary wave structure over the North Atlantic and Europe during the first half of June.
    Type of Medium: Online Resource
    ISSN: 2571-6255
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2924038-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmosphere, MDPI AG, Vol. 10, No. 6 ( 2019-06-24), p. 343-
    Abstract: The linkage between atmospheric blocking (blocking frequency, BF) and total monthly July precipitation in the Selenga River Basin, the main tributary of Lake Baikal, for the period 1979–2016 was investigated. Based on empirical orthogonal functions (EOF) analysis, two dominant modes of precipitation over the Selenga River Basin were extracted. The first EOF mode (EOF 1) is related to precipitation fluctuations mainly in the Mongolian part of Selenga; the second EOF mode (EOF 2)—in the Russian part of Selenga. Based on two different modes obtained, the total amount of precipitation individually for the Russian and Mongolian part of Selenga was calculated. Correlation analysis has demonstrated that precipitation over the Mongolian part of the Selenga Basin is positively correlated to blocking over Eastern Siberia/Mongolia (80–120° E, ESM-BF). Precipitation over the Russian part of the Selenga Basin is positively correlated to blocking over the Urals-Western Siberia (50–80° E, UWS-BF) and European blocking (0–50° E, E-BF). However, the linkage is not stable, and after the mid-1990s, the obtained positive correlation became insignificant. The analysis has shown that the dominance of E or ESM-blocking in July was the primary driver of the existence of two precipitation modes over the Selenga River Basin. During 1996–2016, the negative trend of time coefficients of EOF 1 and 2 for precipitation in Selenga had been observed, which was characterized by displacement of positive precipitation anomalies outside the basin. At the same time, there was a weakening of the linkage between precipitation in the Selenga Basin and blocking frequency. We have revealed two wave-like modes over Northern Eurasia and the subtropical part of Eurasia corresponding to E, ESM-blocks in 1979–1995 and 1996–2016. The change of the Northern and subtropical wave modes is one of the causes for the weakening of the linkage between atmospheric blocking and precipitation in the Selenga Basin and as a consequence decreased precipitation in the Russian and Mongolian part of Selenga during 1979–2016.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...