GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 2545-2545
    Abstract: Heparin-induced thrombocytopenia (HIT) is a prothrombotic autoimmune complication of heparin therapy. Thrombocytopenia and thrombosis in HIT patients are caused by immune complexes containing pathogenic antibodies against platelet factor 4 (PF4)/glycosaminoglycan complexes. Mechanisms of platelet activation and/or destruction in HIT are not fully understood. Phosphatidylserine expression is a marker of platelet activation that contributes to the procoagulant function. On the other hand, phosphatidylserine expression is generally an early marker of cell apoptosis, which, similarly to other cells, controls platelet life span. The aim of this study was to investigate if apoptosis might play a role in HIT. Gel-filtered normal platelets were incubated for 15 or 60 min with recombinant PF4 (10 µg/ml) and KKO antibodies (50 µg/ml) and studied by electron microscopy and flow cytometry using fluorescently labeled markers of cell activation and apoptosis, such as annexin V, antibodies to CD62P (P-selectin) and MitoTracker DeepRed FM. Platelets and platelet-derived microparticles were identified by flow cytometry using labeled antibodies to CD41 and electron microscopy. Calcium ionophore A23187 (10 µM) was used as a positive control. Incubation of platelets with PF4+KKO caused fast expression of P-selectin on platelets comparable with calcium ionophore A23187 stimulation, suggesting that platelets were fully activated by PF4+KKO within 15 min, when they also started to produce CD41 and annexin-positive microparticles. Activation of platelets with PF4+KKO for 60 minutes led to a further increase in phosphatidylserine expression on their surface, with a time-dependent reduction of mitochondrial membrane potential, which reflects a disturbance of energy metabolism and is characteristic of cell apoptosis. Scanning electron microscopy showed that platelets treated with PF4+KKO or A23187, unlike untreated cells, displayed dramatic morphological changes with a loss of discoid shape, formation of filopodia, and microvesiculation. By transmission electron microscopy, the PF4+KKO-treated platelets had an irregular shape due to formation of plasma membrane invaginations and pseudopodia. Formation of an increasing number of intracellular vacuoles and enlargement of the lumen of the open canalicular system were observed. Some vacuoles contained various inclusions, such as secretory granules, membrane components, and grainy particles. The number of secretory granules in the PF4+KKO-treated cells was dramatically reduced. In all cases, formation of microparticles of various shapes and sizes was observed. These results indicate that the PF4-containing pathogenic immune complexes induce strong and time-dependent platelet activation leading to procoagulant microparticle formation that may contribute to thrombosis. At the same time, the results strongly suggest that the HIT-like immune complexes likely induce platelet apoptosis that can be an important mechanism of thrombocytopenia. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Autoimmunity, Elsevier BV, Vol. 107 ( 2020-02), p. 102355-
    Type of Medium: Online Resource
    ISSN: 0896-8411
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1468989-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 9 ( 2019-09), p. 1866-1878
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2019
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cell Death Discovery, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2019-06-24)
    Abstract: Heparin-induced thrombocytopenia (HIT) is a complication of heparin therapy sometimes associated with thrombosis. The hallmark of HIT is antibodies to the heparin/platelet factor 4 (PF4) complex that cause thrombocytopenia and thrombosis through platelet activation. Despite the clinical importance, the molecular mechanisms and late consequences of immune platelet activation are not fully understood. Here, we studied immediate and delayed effects of the complexes formed by human PF4 and HIT-like monoclonal mouse anti-human-PF4/heparin IgG antibodies (named KKO) on isolated human platelets in vitro. Direct platelet-activating effect of the KKO/PF4 complexes was corroborated by the overexpression of phosphatidylserine (PS) and P-selectin on the platelet surface. The immune platelet activation was accompanied by a decrease of the mitochondrial transmembrane potential (ΔΨm), concurrent with a significant gradual reduction of the ATP content in platelets, indicating disruption of energy metabolism. A combination of PS expression and mitochondrial depolarization induced by the PF4-containing immune complexes observed in a substantial fraction of platelets was considered as a sign of ongoing platelet death, as opposed to a subpopulation of activated live platelets with PS on the plasma membrane but normal ΔΨm. Both activated and dying platelets treated with KKO/PF4 formed procoagulant extracellular microvesicles bearing PS on their surface. Scanning and transmission electron microscopy revealed dramatic morphological changes of KKO/PF4-treated platelets, including their fragmentation, another indicator of cell death. Most of the effects of KKO/PF4 were prevented by an anti-FcγRII monoclonal antibody IV.3. The adverse functional and structural changes in platelets induced by the KKO/PF4 complexes were associated with strong time-dependent activation of calpain, but only trace cleavage of caspase 3. The results indicate that the pathogenic PF4-containing HIT-like immune complexes induce direct prothrombotic platelet activation via FcγRIIA receptors followed by non-apoptotic calpain-dependent death of platelets, which can be an important mechanism of thrombocytopenia during HIT development.
    Type of Medium: Online Resource
    ISSN: 2058-7716
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2842546-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 13 ( 2022-06-30), p. 7336-
    Abstract: Autoimmune diseases, including systemic lupus erythematosus (SLE), have a high risk of thrombotic and hemorrhagic complications associated with altered platelet functionality. We studied platelets from the blood of SLE patients and their reactivity. The surface expression of phosphatidylserine, P-selectin, and active integrin αIIbβ3 were measured using flow cytometry before and after platelet stimulation. Soluble P-selectin was measured in plasma. The kinetics of platelet-driven clot contraction was studied, as well as scanning and transmission electron microscopy of unstimulated platelets. Elevated levels of membrane-associated phosphatidylserine and platelet-attached and soluble P-selectin correlated directly with the titers of IgG, anti-dsDNA-antibodies, and circulating immune complexes. Morphologically, platelets in SLE lost their resting discoid shape, formed membrane protrusions and aggregates, and had a rough plasma membrane. The signs of platelet activation were associated paradoxically with reduced reactivity to a physiological stimulus and impaired contractility that revealed platelet exhaustion and refractoriness. Platelet activation has multiple pro-coagulant effects, and the inability to fully contract (retract) blood clots can be either a hemorrhagic or pro-thrombotic mechanism related to altered clot permeability, sensitivity of clots to fibrinolysis, obstructiveness, and embologenicity. Therefore, chronic immune platelet activation followed by secondary platelet dysfunction comprise an understudied pathogenic mechanism that supports hemostatic disorders in autoimmune diseases, such as SLE.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  BioNanoScience Vol. 6, No. 4 ( 2016-12), p. 361-363
    In: BioNanoScience, Springer Science and Business Media LLC, Vol. 6, No. 4 ( 2016-12), p. 361-363
    Type of Medium: Online Resource
    ISSN: 2191-1630 , 2191-1649
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2606470-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-20)
    Abstract: Mutations in the MYH9 gene result in macrothrombocytopenia often associated with hemorrhages. Here, we studied the function and structure of platelets in three family members with a heterozygous mutation R1933X in the MYH9 gene, characteristic of closely related disorders known as the May-Hegglin anomaly and Sebastian syndrome. The examination included complete blood count, blood smear microscopy, platelet flow cytometry (expression of P-selectin and active integrin αIIbβ3 before and after activation), the kinetics of platelet-driven contraction (retraction) of blood clots, as well as scanning/transmission electron microscopy of platelets. Despite severe thrombocytopenia ranging (36–86) × 10 9 /l, none of the patients had hemorrhages at the time of examination, although they had a history of heavy menstruation, spontaneous ecchymosis, and postpartum hemorrhage. Flow cytometry showed background platelet activation, revealed by overexpression of P-selectin and active αIIbβ3 integrin above normal levels. After TRAP-induced stimulation, the fractions of platelets expressing P-selectin in the proband and her sister were below normal response, indicating partial platelet refractoriness. The initiation of clot contraction was delayed. Electron microscopy revealed giant platelets with multiple filopodia and fusion of α-granules with dilated open canalicular system, containing filamentous and vesicular inclusions. The novel concept implies that the R1933X mutation in the MYH9 gene is associated not only with thrombocytopenia, but also with qualitative structural and functional defects in platelets. Platelet dysfunction includes impaired contractility, which can disrupt the compaction of hemostatic clots, making the clots weak and permeable, therefore predisposing patients with MYH9 gene mutations to the hemorrhagic phenotype.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 10 ( 2019-7-16)
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2019
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 521-521
    Abstract: Introduction: Platelets play a key role in formation of protective hemostatic blood clots and pathological obstructive thrombi. Under (patho)physiological conditions, chemically activated platelets change their morphology, express adhesive molecules, undergo aggregation, secrete procoagulant substances, and induce mechanical contraction (retraction) of the blood clots. Despite the vital importance of these platelet functions, the subsequent fate of activated platelets is largely unknown. We hypothesize that activated platelets undergo late alterations that determine their fate and may have a pathogenic importance in thrombotic and hemostatic disorders. Methods: We used a combination of confocal microscopy, immunofluorescence, scanning and transmission electron microscopy, flow cytometry, biochemical and biomechanical measurements to study deferred structural, metabolic, and functional consequences of thrombin-induced activation of viable human platelets, either suspended in platelet-rich plasma or isolated by gel-filtration. Results: Visualized by confocal microscopy, fluorescently labeled platelets in thrombin-induced plasma clots initially underwent shape changes characteristic of platelet activation, but in about 30 min many platelets and platelet aggregates broke up into organelle-containing vesicular fragments. There were two types of platelet-derived vesicles differing in their size and cellular origin: one smaller type was shedding from the tips of filopodia, while the other type resulted from fragmentation of platelet bodies. Concurrently with the fragmentation, thrombin-activated platelets displayed dramatically altered intracellular distribution of F-actin and septins detected as intense fluorescent clusters with a ~2-fold increase in the intensity of septins 2 and 9 and a ~300-fold increase in the F-actin staining. Synchronously with the structural alterations, thrombin induced a time-dependent reduction of the mitochondrial membrane potential (Δψm) in platelets. The overall fluorescence intensity of the Δψm-sensitive MitoTracker dye in freshly formed thrombin-initiated plasma clots dropped 2- and 4-fold after 60 min and 90 min, respectively. A drop of Δψm inversely correlated with an increase of the fraction of disintegrated platelets (r=-0.93, p 〈 0.01). Flow cytometry showed enhanced phosphatidylserine exposure in thrombin-activated platelets, either with or without mitochondrial depolarization. Thrombin caused a significant 59% decrease of the average ATP content in activated platelets relative to untreated platelets after 60 min of incubation. Remarkably, the initial drop of Δψm and ATP content was almost concurred with the termination of contraction of the platelet-rich plasma clot measured as a 90%-decrease of platelet-generated contractile stress. Unexpectedly, no activation of caspase 3/7 was detected in platelets after 90 min of treatment with thrombin. Meanwhile, calpain activity detected in platelets 90 min after thrombin treatment was 6.5-fold higher compared to untreated platelets. Moreover, calpain inhibition caused a ~30-min delay in the commencement of thrombin-induced platelet fragmentation. Conclusions: Our findings indicate that following thrombin-induced platelet activation, a substantial fraction of platelets undergo time-dependent dysfunction and structural disintegration into subcellular particles. The fragmentation of platelets is accompanied by dramatic rearrangements of platelet cytoskeletal components, including polymerization, clustering, and redistribution of actin and septins. Thrombin-induced platelet fragmentation is concurrent with severe impairment of platelet functionality, including mitochondrial depolarization, ATP depletion, and loss of platelet contractility. The lack of caspase activity and increased calpain activity in energetically exhausted thrombin-treated platelets undergoing fragmentation suggests a calpain-dependent platelet death pathway. These studies indicate that such a form of platelet death may be an underappreciated mechanism for enhanced elimination of platelets from the circulation in (pro)thrombotic conditions or under other conditions once they have performed their functions. Work supported by the Program for Competitive Growth at KFU and AHA grant 17SDG33680177. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Thrombosis and Haemostasis, Elsevier BV, Vol. 21, No. 9 ( 2023-09), p. 2418-2429
    Type of Medium: Online Resource
    ISSN: 1538-7836
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2099291-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...