GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: mBio, American Society for Microbiology, Vol. 11, No. 1 ( 2020-02-25)
    Kurzfassung: The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the Δ sakA , Δ mpkC , and Δ sakA Δ mpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in Δ sakA , Δ mpkC , and Δ sakA Δ mpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation. IMPORTANCE Aspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the Δ sakA and Δ mpkC A. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: mBio, American Society for Microbiology, Vol. 9, No. 1 ( 2018-03-07)
    Kurzfassung: For dimorphic fungal pathogens, mammalian body temperature can have contrasting roles. Mammalian body temperature induces differentiation of the fungal pathogen Histoplasma capsulatum into a pathogenic state characterized by infection of host phagocytes. On the other hand, elevated temperatures represent a significant barrier to infection by many microbes. By functionally characterizing cells lacking O-linked mannosylation enzymes, we show that protein mannosylation confers thermotolerance on H. capsulatum , enabling infection of mammalian hosts.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Society for Microbiology ; 2018
    In:  mBio Vol. 9, No. 6 ( 2018-12-21)
    In: mBio, American Society for Microbiology, Vol. 9, No. 6 ( 2018-12-21)
    Kurzfassung: Mitochondria are essential organelles that act in pathways including ATP production, β-oxidation, and clearance of reactive oxygen species. They occur as a complex reticular network that constantly undergoes fusion and fission, mediated by dynamin-related proteins (DRPs). DRPs include Fzo1, which mediates fusion, and Dnm1, Mdv1, and Fis1, which mediate fission. Mitochondrial morphology has been implicated in virulence in multiple fungi, as with the association between virulence and increased mitochondrial fusion in Cryptococcus gattii . This relationship, however, has not been studied in Cryptococcus neoformans , a related opportunistic pathogen. C. neoformans is an environmental yeast that can adapt to the human host environment, overcome the innate immune system, and eventually disseminate and cause lethal meningoencephalitis. We used gene deletion of key DRPs to study their role in mitochondrial morphology and pathogenesis of this yeast. Interestingly, increasing mitochondrial fusion did not increase resistance to oxidative stress, unlike in model yeast. Blocking mitochondrial fusion, however, yielded increased susceptibility to oxidative and nitrosative stresses as well as complete avirulence. This lack of virulence was not mediated by any effects of altered mitochondrial function on two major virulence factors, capsule and melanin. Instead, it was due to decreased survival within macrophages, which in turn was a consequence of increased susceptibility to oxidative and nitrosative stress. Supporting this conclusion, reactive oxygen species (ROS) scavengers rescued the ability of fusion mutants to survive intracellularly. These findings increase our understanding of cryptococcal biology and virulence and shed light on an important group of proteins and cellular processes in this pathogen. IMPORTANCE C. neoformans is a yeast that causes fatal brain infection in close to 200,000 people worldwide every year, mainly afflicting individuals with AIDS or others who are severely immunocompromised. One feature of this microbe that helps it cause disease is that it is able to withstand toxic molecules it encounters when host cells engulf it in their efforts to control the infection. Mitochondria are important organelles responsible for energy production and other key cellular processes. They typically exist in a complex network that changes morphology by fusing and dividing; these alterations also influence mitochondrial function. Using genetic approaches, we found that changes in mitochondrial morphology dramatically influence cryptococcal virulence. We showed that this occurs because the altered mitochondria are less able to eliminate the harmful molecules that host cells produce to kill invading microbes. These findings are important because they elucidate fundamental biology and virulence and may suggest avenues for therapy.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Academic Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 94, No. 6 ( 2019-06), p. 819-825
    Kurzfassung: Medical educators have not reached widespread agreement on core content for a U.S. medical school curriculum. As a first step toward addressing this, five U.S. medical schools formed the Robert Wood Johnson Foundation Reimagining Medical Education collaborative to define, create, implement, and freely share core content for a foundational medical school course on microbiology and immunology. This proof-of-concept project involved delivery of core content to preclinical medical students through online videos and class-time interactions between students and facilitators. A flexible, modular design allowed four of the medical schools to successfully implement the content modules in diverse curricular settings. Compared with the prior year, student satisfaction ratings after implementation were comparable or showed a statistically significant improvement. Students who took this course at a time point in their training similar to when the USMLE Step 1 reference group took Step 1 earned equivalent scores on National Board of Medical Examiners–Customized Assessment Services microbiology exam items. Exam scores for three schools ranged from 0.82 to 0.84, compared with 0.81 for the national reference group; exam scores were 0.70 at the fourth school, where students took the exam in their first quarter, two years earlier than the reference group. This project demonstrates that core content for a foundational medical school course can be defined, created, and used by multiple medical schools without compromising student satisfaction or knowledge. This project offers one approach to collaboratively defining core content and designing curricular resources for preclinical medical school education that can be shared.
    Materialart: Online-Ressource
    ISSN: 1040-2446
    RVK:
    Sprache: Englisch
    Verlag: Ovid Technologies (Wolters Kluwer Health)
    Publikationsdatum: 2019
    ZDB Id: 2025367-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: mBio, American Society for Microbiology, Vol. 10, No. 4 ( 2019-08-27)
    Kurzfassung: Patient outcomes during infection are due to a complex interplay between the quality of medical care, host immunity factors, and the infecting pathogen’s characteristics. To probe the influence of pathogen genotype on human survival, immune response, and other parameters of disease, we examined Cryptococcus neoformans isolates collected during the Cryptococcal Optimal Antiretroviral Therapy (ART) Timing (COAT) Trial in Uganda. We measured human participants’ survival, meningitis disease parameters, immunologic phenotypes, and pathogen in vitro growth characteristics. We compared those clinical data to whole-genome sequences from 38  C. neoformans isolates of the most frequently observed sequence type (ST), ST93, in our Ugandan participant population and to sequences from an additional 18 strains of 9 other sequence types representing the known genetic diversity within the Ugandan Cryptococcus clinical isolates. We focused our analyses on 652 polymorphisms that were variable among the ST93 genomes, were not in centromeres or extreme telomeres, and were predicted to have a fitness effect. Logistic regression and principal component analysis identified 40 candidate Cryptococcus genes and 3 hypothetical RNAs associated with human survival, immunologic response, or clinical parameters. We infected mice with 17 available KN99α gene deletion strains for these candidate genes and found that 35% (6/17) directly influenced murine survival. Four of the six gene deletions that impacted murine survival were novel. Such bedside-to-bench translational research identifies important candidate genes for future studies on virulence-associated traits in human Cryptococcus infections. IMPORTANCE Even with the best available care, mortality rates in cryptococcal meningitis range from 20% to 60%. Disease is often due to infection by the fungus Cryptococcus neoformans and involves a complex interaction between the human host and the fungal pathogen. Although previous studies have suggested genetic differences in the pathogen impact human disease, it has proven quite difficult to identify the specific C. neoformans genes that impact the outcome of the human infection. Here, we take advantage of a Ugandan patient cohort infected with closely related C. neoformans strains to examine the role of pathogen genetic variants on several human disease characteristics. Using a pathogen whole-genome sequencing approach, we showed that 40  C. neoformans genes are associated with human disease. Surprisingly, many of these genes are specific to Cryptococcus and have unknown functions. We also show deletion of some of these genes alters disease in a mouse model of infection, confirming their role in disease. These findings are particularly important because they are the first to identify C. neoformans genes associated with human cryptococcal meningitis and lay the foundation for future studies that may lead to new treatment strategies aimed at reducing patient mortality.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: mSphere, American Society for Microbiology, Vol. 6, No. 3 ( 2021-06-30)
    Kurzfassung: Candida auris , a recently emergent fungal pathogen, has caused invasive infections in health care settings worldwide. Mortality rates approach 60% and hospital spread poses a public health threat. Compared to other Candida spp., C. auris avoids triggering the antifungal activity of neutrophils, innate immune cells that are critical for responding to many invasive fungal infections, including candidiasis. However, the mechanism underpinning this immune evasion has been largely unknown. Here, we show that C. auris cell wall mannosylation contributes to the evasion of neutrophils ex vivo and in a zebrafish infection model. Genetic disruption of mannosylation pathways ( PMR1 and VAN1 ) diminishes the outer cell wall mannan, unmasks immunostimulatory components, and promotes neutrophil engagement, phagocytosis, and killing. Upon examination of these pathways in other Candida spp. ( Candida albicans and Candida glabrata ), we did not find an impact on neutrophil interactions. These studies show how C. auris mannosylation contributes to neutrophil evasion though pathways distinct from other common Candida spp. The findings shed light on innate immune evasion for this emerging pathogen. IMPORTANCE The emerging fungal pathogen Candida auris presents a global public health threat. Therapeutic options are often limited for this frequently drug-resistant pathogen, and mortality rates for invasive disease are high. Previous study has demonstrated that neutrophils, leukocytes critical for the antifungal host defense, do not efficiently recognize and kill C. auris . Here, we show how the outer cell wall of C. auris promotes immune evasion. Disruption of this mannan polysaccharide layer renders C. auris susceptible to neutrophil killing ex vivo and in a zebrafish model of invasive candidiasis. The role of these mannosylation pathways for neutrophil evasion appears divergent from other common Candida species.
    Materialart: Online-Ressource
    ISSN: 2379-5042
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2021
    ZDB Id: 2844248-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: mBio, American Society for Microbiology, Vol. 10, No. 4 ( 2019-08-27)
    Kurzfassung: We found a novel role of Myo5, a type I myosin (myosin-I), and its fortuitous association with d -amino acid utilization in Cryptococcus gattii . Myo5 colocalized with actin cortical patches and was required for endocytosis. Interestingly, the myo5Δ mutant accumulated high levels of d -proline and d -alanine which caused toxicity in C. gattii cells. The myo5Δ mutant also accumulated a large set of substrates, such as membrane-permeant as well as non-membrane-permeant dyes, l -proline, l -alanine, and flucytosine intracellularly. Furthermore, the efflux rate of fluorescein was significantly increased in the myo5Δ mutant. Importantly, the endocytic defect of the myo5Δ mutant did not affect the localization of the proline permease and flucytosine transporter. These data indicate that the substrate accumulation phenotype is not solely due to a defect in endocytosis, but the membrane properties may have been altered in the myo5Δ mutant. Consistent with this, the sterol staining pattern of the myo5Δ mutant was different from that of the wild type, and the mutant was hypersensitive to amphotericin B. It appears that the changes in sterol distribution may have caused altered membrane permeability in the myo5Δ mutant, allowing increased accumulation of substrate. Moreover, myosin-I mutants generated in several other yeast species displayed a similar substrate accumulation phenotype. Thus, fungal type I myosin appears to play an important role in regulating membrane permeability. Although the substrate accumulation phenotype was detected in strains with mutations in the genes involved in actin nucleation, the phenotype was not shared in all endocytic mutants, indicating a complicated relationship between substrate accumulation and endocytosis. IMPORTANCE Cryptococcus gattii , one of the etiological agents of cryptococcosis, can be distinguished from its sister species Cryptococcus neoformans by growth on d -amino acids. C. gattii MYO5 affected the growth of C. gattii on d -amino acids. The myo5Δ cells accumulated high levels of various substrates from outside the cells, and excessively accumulated d -amino acids appeared to have caused toxicity in the myo5Δ cells. We provide evidence on the alteration of membrane properties in the myo5Δ mutants. Additionally, alteration in the myo5Δ membrane permeability causing higher substrate accumulation is associated with the changes in the sterol distribution. Furthermore, myosin-I in three other yeasts also manifested a similar role in substrate accumulation. Thus, while fungal myosin-I may function as a classical myosin-I, it has hitherto unknown additional roles in regulating membrane permeability. Since deletion of fungal myosin-I causes significantly elevated susceptibility to multiple antifungal drugs, it could serve as an effective target for augmentation of fungal therapy.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: mBio, American Society for Microbiology, Vol. 9, No. 2 ( 2018-05-02)
    Kurzfassung: Patients with chronic granulomatous disease (CGD) are highly susceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied Aspergillus species, CGD patients often suffer IA caused by A. nidulans , A. tanneri , and other rare species. These non- fumigatus Aspergillus species are more resistant to antifungal drugs and cause higher fatality rates than A. fumigatus . Therefore, alternative therapies are needed to protect CGD patients. We report an effective immunotherapy of mice infected with three Aspergillus species via PICLC dosing. While protection from IA was long lasting, PICLC induction of type I IFN surged but quickly returned to baseline levels, suggesting that PICLC was altering early events in IA. Interestingly, we found responding immune cells to be similar between PICLC-treated and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier recruitment of the leukocytes and suppressed fungal growth. This study highlights the value of type I IFN induction in CGD patients.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2018
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: mBio, American Society for Microbiology, Vol. 14, No. 1 ( 2023-02-28)
    Kurzfassung: Aspergillus fumigatus is a ubiquitous environmental mold that causes significant mortality particularly among immunocompromised patients. The detection of the Aspergillus -derived carbohydrate galactomannan in patient serum and bronchoalveolar lavage fluid is the major biomarker used to detect A. fumigatus infection in clinical medicine. Despite the clinical relevance of this carbohydrate, we lack a fundamental understanding of how galactomannan is recognized by the immune system and its consequences. Galactomannan is composed of a linear mannan backbone with galactofuranose sidechains and is found both attached to the cell surface of Aspergillus and as a soluble carbohydrate in the extracellular milieu. In this study, we utilized fungal-like particles composed of highly purified Aspergillus galactomannan to identify a C-type lectin host receptor for this fungal carbohydrate. We identified a novel and specific interaction between Aspergillus galactomannan and the C-type lectin receptor Dectin-2. We demonstrate that galactomannan bound to Dectin-2 and induced Dectin-2-dependent signaling, including activation of spleen tyrosine kinase, gene transcription, and tumor necrosis factor alpha (TNF-α) production. Deficiency of Dectin-2 increased immune cell recruitment to the lungs but was dispensable for survival in a mouse model of pulmonary aspergillosis. Our results identify a novel interaction between galactomannan and Dectin-2 and demonstrate that Dectin-2 is a receptor for galactomannan, which leads to a proinflammatory immune response in the lung. IMPORTANCE Aspergillus fumigatus is a fungal pathogen that causes serious and often fatal disease in humans. The surface of Aspergillus is composed of complex sugar molecules. Recognition of these carbohydrates by immune cells by carbohydrate lectin receptors can lead to clearance of the infection or, in some cases, benefit the fungus by dampening the host response. Galactomannan is a carbohydrate that is part of the cell surface of Aspergillus but is also released during infection and is found in patient lungs as well as their bloodstreams. The significance of our research is that we have identified Dectin-2 as a mammalian immune cell receptor that recognizes, binds, and signals in response to galactomannan. These results enhance our understanding of how this carbohydrate interacts with the immune system at the site of infection and will lead to broader understanding of how release of galactomannan by Aspergillus effects the immune response in infected patients.
    Materialart: Online-Ressource
    ISSN: 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2023
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    In: mBio, American Society for Microbiology, Vol. 10, No. 6 ( 2019-12-24)
    Kurzfassung: We discovered a new lineage of the globally important fungal pathogen Cryptococcus gattii on the basis of analysis of six isolates collected from three locations spanning the Central Miombo Woodlands of Zambia, Africa. All isolates were from environments (middens and tree holes) that are associated with a small mammal, the African hyrax. Phylogenetic and population genetic analyses confirmed that these isolates form a distinct, deeply divergent lineage, which we name VGV. VGV comprises two subclades (A and B) that are capable of causing mild lung infection with negligible neurotropism in mice. Comparing the VGV genome to previously identified lineages of C. gattii revealed a unique suite of genes together with gene loss and inversion events. However, standard URA5 restriction fragment length polymorphism (RFLP) analysis could not distinguish between VGV and VGIV isolates. We therefore developed a new URA5 RFLP method that can reliably identify the newly described lineage. Our work highlights how sampling understudied ecological regions alongside genomic and functional characterization can broaden our understanding of the evolution and ecology of major global pathogens. IMPORTANCE Cryptococcus gattii is an environmental pathogen that causes severe systemic infection in immunocompetent individuals more often than in immunocompromised humans. Over the past 2 decades, researchers have shown that C. gattii falls within four genetically distinct major lineages. By combining field work from an understudied ecological region (the Central Miombo Woodlands of Zambia, Africa), genome sequencing and assemblies, phylogenetic and population genetic analyses, and phenotypic characterization (morphology, histopathological, drug-sensitivity, survival experiments), we discovered a hitherto unknown lineage, which we name VGV (variety gattii five). The discovery of a new lineage from an understudied ecological region has far-reaching implications for the study and understanding of fungal pathogens and diseases they cause.
    Materialart: Online-Ressource
    ISSN: 2161-2129 , 2150-7511
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2019
    ZDB Id: 2557172-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...