GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Language
Years
Subjects(RVK)
  • 1
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 6, No. 15 ( 2020-04-10)
    Abstract: Schizorhodopsins (SzRs), a rhodopsin family first identified in Asgard archaea, the archaeal group closest to eukaryotes, are present at a phylogenetically intermediate position between typical microbial rhodopsins and heliorhodopsins. However, the biological function and molecular properties of SzRs have not been reported. Here, SzRs from Asgardarchaeota and from a yet unknown microorganism are expressed in Escherichia coli and mammalian cells, and ion transport assays and patch clamp analyses are used to demonstrate SzR as a novel type of light-driven inward H + pump. The mutation of a cytoplasmic glutamate inhibited inward H + transport, suggesting that it functions as a cytoplasmic H + acceptor. The function, trimeric structure, and H + transport mechanism of SzR are similar to that of xenorhodopsin (XeR), a light-driven inward H + pumping microbial rhodopsins, implying that they evolved convergently. The inward H + pump function of SzR provides new insight into the photobiological life cycle of the Asgardarchaeota.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiome, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2022-12)
    Abstract: The increased use of metagenomics and single-cell genomics led to the discovery of organisms from phyla with no cultivated representatives and proposed new microbial lineages such as the candidate phyla radiation (CPR or Patescibacteria). These bacteria have peculiar ribosomal structures, reduced metabolic capacities, small genome, and cell sizes, and a general host-associated lifestyle was proposed for the radiation. So far, most CPR genomes were obtained from groundwaters; however, their diversity, abundance, and role in surface freshwaters is largely unexplored. Here, we attempt to close these knowledge gaps by deep metagenomic sequencing of 119 samples of 17 different freshwater lakes located in Europe and Asia. Moreover, we applied Fluorescence in situ Hybridization followed by Catalyzed Reporter Deposition (CARD-FISH) for a first visualization of distinct CPR lineages in freshwater samples. Results A total of 174 dereplicated metagenome-assembled genomes (MAGs) of diverse CPR lineages were recovered from the investigated lakes, with a higher prevalence from hypolimnion samples (162 MAGs). They have reduced genomes (median size 1 Mbp) and were generally found in low abundances (0.02–14.36 coverage/Gb) and with estimated slow replication rates. The analysis of genomic traits and CARD-FISH results showed that the radiation is an eclectic group in terms of metabolic capabilities and potential lifestyles, ranging from what appear to be free-living lineages to host- or particle-associated groups. Although some complexes of the electron transport chain were present in the CPR MAGs, together with ion-pumping rhodopsins and heliorhodopsins, we believe that they most probably adopt a fermentative metabolism. Terminal oxidases might function in O 2 scavenging, while heliorhodopsins could be involved in mitigation against oxidative stress. Conclusions A high diversity of CPR MAGs was recovered, and distinct CPR lineages did not seem to be limited to lakes with specific trophic states. Their reduced metabolic capacities resemble the ones described for genomes in groundwater and animal-associated samples, apart from Gracilibacteria that possesses more complete metabolic pathways. Even though this radiation is mostly host-associated, we also observed organisms from different clades (ABY1, Paceibacteria, Saccharimonadia) that appear to be unattached to any other organisms or were associated with ‘lake snow’ particles (ABY1, Gracilibacteria), suggesting a broad range of potential life-strategies in this phylum.
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Microbiome, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2023-01-26)
    Abstract: The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. Results We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. Conclusion We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom.
    Type of Medium: Online Resource
    ISSN: 2049-2618
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2697425-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Nature Microbiology Vol. 4, No. 7 ( 2019-04-01), p. 1129-1137
    In: Nature Microbiology, Springer Science and Business Media LLC, Vol. 4, No. 7 ( 2019-04-01), p. 1129-1137
    Type of Medium: Online Resource
    ISSN: 2058-5276
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2845610-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Environmental Microbiology, Wiley, Vol. 23, No. 7 ( 2021-07), p. 3523-3540
    Abstract: Ursu Lake is located in the Middle Miocene salt deposit of Central Romania. It is stratified, and the water column has three distinct water masses: an upper freshwater‐to‐moderately saline stratum (0–3 m), an intermediate stratum exhibiting a steep halocline (3–3.5 m), and a lower hypersaline stratum (4 m and below) that is euxinic (i.e. anoxic and sulphidic). Recent studies have characterized the lake's microbial taxonomy and given rise to intriguing ecological questions. Here, we explore whether the communities are dynamic or stable in relation to taxonomic composition, geochemistry, biophysics, and ecophysiological functions during the annual cycle. We found: (i) seasonally fluctuating, light‐dependent communities in the upper layer (≥0.987–0.990 water‐activity), a stable but phylogenetically diverse population of heterotrophs in the hypersaline stratum (water activities down to 0.762) and a persistent plate of green sulphur bacteria that connects these two (0.958–0.956 water activity) at 3–3.5 to 4 m; (ii) communities that might be involved in carbon‐ and sulphur‐cycling between and within the lake's three main water masses; (iii) uncultured lineages including Acetothermia (OP1), Cloacimonetes (WWE1), Marinimicrobia (SAR406), Omnitrophicaeota (OP3), Parcubacteria (OD1) and other Candidate Phyla Radiation bacteria, and SR1 in the hypersaline stratum (likely involved in the anaerobic steps of carbon‐ and sulphur‐cycling); and (iv) that species richness and habitat stability are associated with high redox‐potentials. Ursu Lake has a unique and complex ecology, at the same time exhibiting dynamic fluctuations and stability, and can be used as a modern analogue for ancient euxinic water bodies and comparator system for other stratified hypersaline systems.
    Type of Medium: Online Resource
    ISSN: 1462-2912 , 1462-2920
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020213-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied and Environmental Microbiology, American Society for Microbiology, Vol. 86, No. 22 ( 2020-10-28)
    Abstract: Nitrite-oxidizing bacteria (NOB) are ubiquitous and abundant microorganisms that play key roles in global nitrogen and carbon biogeochemical cycling. Despite recent advances in understanding NOB physiology and taxonomy, currently very few cultured NOB or representative NOB genome sequences from marine environments exist. In this study, we employed enrichment culturing and genomic approaches to shed light on the phylogeny and metabolic capacity of marine NOB. We successfully enriched two marine NOB (designated MSP and DJ) and obtained a high-quality metagenome-assembled genome (MAG) from each organism. The maximum nitrite oxidation rates of the MSP and DJ enrichment cultures were 13.8 and 30.0 μM nitrite per day, respectively, with these optimum rates occurring at 0.1 mM and 0.3 mM nitrite, respectively. Each enrichment culture exhibited a different tolerance to various nitrite and salt concentrations. Based on phylogenomic position and overall genome relatedness indices, both NOB MAGs were proposed as novel taxa within the Nitrospinota and Nitrospirota phyla. Functional predictions indicated that both NOB MAGs shared many highly conserved metabolic features with other NOB. Both NOB MAGs encoded proteins for hydrogen and organic compound metabolism and defense mechanisms for oxidative stress. Additionally, these organisms may have the genetic potential to produce cobalamin (an essential enzyme cofactor that is limiting in many environments) and, thus, may play an important role in recycling cobalamin in marine sediment. Overall, this study appreciably expands our understanding of the Nitrospinota and Nitrospirota phyla and suggests that these NOB play important biogeochemical roles in marine habitats. IMPORTANCE Nitrification is a key process in the biogeochemical and global nitrogen cycle. Nitrite-oxidizing bacteria (NOB) perform the second step of aerobic nitrification (converting nitrite to nitrate), which is critical for transferring nitrogen to other organisms for assimilation or energy. Despite their ecological importance, there are few cultured or genomic representatives from marine systems. Here, we obtained two NOB (designated MSP and DJ) enriched from marine sediments and estimated the physiological and genomic traits of these marine microbes. Both NOB enrichment cultures exhibit distinct responses to various nitrite and salt concentrations. Genomic analyses suggest that these NOB are metabolically flexible (similar to other previously described NOB) yet also have individual genomic differences that likely support distinct niche distribution. In conclusion, this study provides more insights into the ecological roles of NOB in marine environments.
    Type of Medium: Online Resource
    ISSN: 0099-2240 , 1098-5336
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 223011-2
    detail.hit.zdb_id: 1478346-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society for Microbiology ; 2022
    In:  mSystems Vol. 7, No. 5 ( 2022-10-26)
    In: mSystems, American Society for Microbiology, Vol. 7, No. 5 ( 2022-10-26)
    Abstract: Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.
    Type of Medium: Online Resource
    ISSN: 2379-5077
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2844333-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: mSphere, American Society for Microbiology, Vol. 5, No. 4 ( 2020-08-26)
    Abstract: Metagenome-assembled genomes (MAGs) of Asgardarchaeota have been recovered from a variety of habitats, broadening their environmental distribution and providing access to the genetic makeup of this archaeal lineage. The recent success in cultivating the first representative of Lokiarchaeia was a breakthrough in science at large and gave rise to new hypotheses about the evolution of eukaryotes. Despite their singular phylogenetic position at the base of the eukaryotic tree of life, the morphology of these bewildering organisms remains a mystery, except for the report of an unusual morphology with long, branching protrusions of the cultivated Lokiarchaeion strain “ Candidatus Prometheoarchaeum syntrophicum” MK-D1. In order to visualize this elusive group, we applied a combination of fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed CARD-FISH probes for Heimdallarchaeia and Lokiarchaeia lineages, and provide the first visual evidence for Heimdallarchaeia and new images of a lineage of Lokiarchaeia that is different from the cultured representative. Here, we show that while Heimdallarchaeia are characterized by a uniform cellular morphology typified by a centralized DNA localization, Lokiarchaeia display a plethora of shapes and sizes that likely reflect their broad phylogenetic diversity and ecological distribution. IMPORTANCE Asgardarchaeota are considered to be the closest relatives to modern eukaryotes. These enigmatic microbes have been mainly studied using metagenome-assembled genomes (MAGs). Only very recently, a first member of Lokiarchaeia was isolated and characterized in detail; it featured a striking morphology with long, branching protrusions. In order to visualize additional members of the phylum Asgardarchaeota, we applied a fluorescence in situ hybridization technique and epifluorescence microscopy on coastal hypersaline sediment samples, using specifically designed probes for Heimdallarchaeia and Lokiarchaeia lineages. We provide the first visual evidence for Heimdallarchaeia that are characterized by a uniform cellular morphology typified by an apparently centralized DNA localization. Further, we provide new images of a lineage of Lokiarchaeia that is different from the cultured representative and with multiple morphologies, ranging from small ovoid cells to long filaments. This diversity in observed cell shapes is likely owing to the large phylogenetic diversity within Asgardarchaeota, the vast majority of which remain uncultured.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: mSphere, American Society for Microbiology, Vol. 6, No. 6 ( 2021-12-22)
    Abstract: Rhodopsins are light-activated proteins displaying an enormous versatility of function as cation/anion pumps or sensing environmental stimuli and are widely distributed across all domains of life. Even with wide sequence divergence and uncertain evolutionary linkages between microbial (type 1) and animal (type 2) rhodopsins, the membrane orientation of the core structural scaffold of both was presumed universal. This was recently amended through the discovery of heliorhodopsins (HeRs; type 3), that, in contrast to known rhodopsins, display an inverted membrane topology and yet retain similarities in sequence, structure, and the light-activated response. While no ion-pumping activity has been demonstrated for HeRs and multiple crystal structures are available, fundamental questions regarding their cellular and ecological function or even their taxonomic distribution remain unresolved. Here, we investigated HeR function and distribution using genomic/metagenomic data with protein domain fusions, contextual genomic information, and gene coexpression analysis with strand-specific metatranscriptomics. We bring to resolution the debated monoderm/diderm occurrence patterns and show that HeRs are restricted to monoderms. Moreover, we provide compelling evidence that HeRs are a novel type of sensory rhodopsins linked to histidine kinases and other two-component system genes across phyla. In addition, we also describe two novel putative signal-transducing domains fused to some HeRs. We posit that HeRs likely function as generalized light-dependent switches involved in the mitigation of light-induced oxidative stress and metabolic circuitry regulation. Their role as sensory rhodopsins is corroborated by their photocycle dynamics and their presence/function in monoderms is likely connected to the higher sensitivity of these organisms to light-induced damage. IMPORTANCE Heliorhodopsins are enigmatic, novel rhodopsins with a membrane orientation that is opposite to all known rhodopsins. However, their cellular and ecological functions are unknown, and even their taxonomic distribution remains a subject of debate. We provide evidence that HeRs are a novel type of sensory rhodopsins linked to histidine kinases and other two-component system genes across phyla boundaries. In support of this, we also identify two novel putative signal transducing domains in HeRs that are fused with them. We also observe linkages of HeRs to genes involved in mitigation of light-induced oxidative stress and increased carbon and nitrogen metabolism. Finally, we synthesize these findings into a framework that connects HeRs with the cellular response to light in monoderms, activating light-induced oxidative stress defenses along with carbon/nitrogen metabolic circuitries. These findings are consistent with the evolutionary, taxonomic, structural, and genomic data available so far.
    Type of Medium: Online Resource
    ISSN: 2379-5042
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2021
    detail.hit.zdb_id: 2844248-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Aerobiologia, Springer Science and Business Media LLC, Vol. 34, No. 4 ( 2018-12), p. 445-468
    Type of Medium: Online Resource
    ISSN: 0393-5965 , 1573-3025
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1499126-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...