GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Geoscience, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2017-1), p. 24-29
    Type of Medium: Online Resource
    ISSN: 1752-0894 , 1752-0908
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2396648-8
    detail.hit.zdb_id: 2405323-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1998
    In:  Nature Vol. 394, No. 6692 ( 1998-7), p. 462-464
    In: Nature, Springer Science and Business Media LLC, Vol. 394, No. 6692 ( 1998-7), p. 462-464
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1998
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Global Biogeochemical Cycles Vol. 33, No. 6 ( 2019-06), p. 649-667
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 33, No. 6 ( 2019-06), p. 649-667
    Abstract: Nitrate isotope ratios indicate substantial remineralization of organic matter in deep Baffin Bay, fueled by Pacific‐derived nutrients Nitrous oxide isotopomers support a predominantly sedimentary source of N 2 O propagating well into the oxygenated water column Sedimentary denitrification is a significant sink of dissolved inorganic nitrogen in deep Baffin Bay
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 1998
    In:  Journal of Earth System Science Vol. 107, No. 4 ( 1998-12), p. 367-378
    In: Journal of Earth System Science, Springer Science and Business Media LLC, Vol. 107, No. 4 ( 1998-12), p. 367-378
    Type of Medium: Online Resource
    ISSN: 0253-4126
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 1998
    detail.hit.zdb_id: 2081712-5
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2000
    In:  Journal of Geophysical Research: Oceans Vol. 105, No. C8 ( 2000-08-15), p. 19599-19614
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 105, No. C8 ( 2000-08-15), p. 19599-19614
    Abstract: We report analyses of the nitrogen isotopic composition of nitrate in the eastern Indian and Pacific sectors of the Southern Ocean. In this paper, we focus on the subsurface data as well as data from the deep waters of other ocean basins. Nitrate δ 15 N is relatively invariant in much of the abyssal ocean (i.e., below 2.5 km), with a value of 4.8±0.2‰ observed in Lower Circumpolar Deep Water, North Atlantic Deep Water, and central Pacific deep water. The isotopic invariance of deep ocean nitrate stems fundamentally from the completeness of nitrate utilization in most of the global surface ocean, the Southern Ocean surface being an important exception. In the Subantarctic Zone (north of the Polar Frontal Zone) the nitrate δ 15 N of Upper Circumpolar Deep Water is ∼0.7‰ greater than that of Lower Circumpolar Deep Water. This isotopic enrichment appears to result from denitrification in the low‐latitude water masses with which Upper Circumpolar Deep Water communicates. The isotopic enrichment of Upper Circumpolar Deep Water is diminished in the Antarctic, probably because of the remineralization of sinking organic N, which has a low δ 15 N in the Antarctic. Relative to the other water masses of the Southern Ocean, the Subantarctic thermocline has a very low nitrate δ 15 N for its nitrate concentration because of exchange with the low‐latitude thermocline, where this isotopic signature appears to originate. This signature of the low‐latitude thermocline has two probable causes: (1) mixing with low‐nitrate surface water and (2) the oxidation of newly fixed N.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2000
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Biogeosciences, Copernicus GmbH, Vol. 10, No. 1 ( 2013-01-17), p. 267-279
    Abstract: Abstract. Excess nitrogen gas (N2xs) was measured in samples collected at six locations in the eastern and western sub-basins of the Cariaco Basin, Venezuela, in September 2008 (non-upwelling conditions) and March 2009 (upwelling conditions). During both sampling periods, N2xs concentrations were below detection in surface waters, increasing to ~ 22 μmol N kg−1 at the oxic–anoxic interface ([O2] 〈 ~ 4 μmol kg−1, ~ 250 m). Below the oxic–anoxic interface (300–400 m), the average concentration of N2xs was 24.7 ± 1.9 μmol N kg−1 in September 2008 and 27.5 ± 2.0 μmol N kg−1 in March 2009, i.e., N2xs concentrations within this depth interval were ~ 3 μmol N kg−1 higher (p 〈 0.001) during the upwelling season compared to the non-upwelling period. These results suggest that N-loss in the Cariaco Basin may vary seasonally in response to changes in the flux of sinking particulate organic matter. We attribute the increase in N2xs concentrations, or N-loss, observed during upwelling to: (1) higher availability of fixed nitrogen derived from suspended and sinking particles at the oxic–anoxic interface and/or (2) enhanced ventilation at the oxic–anoxic interface during upwelling.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1999
    In:  Global Biogeochemical Cycles Vol. 13, No. 4 ( 1999-12), p. 1149-1166
    In: Global Biogeochemical Cycles, American Geophysical Union (AGU), Vol. 13, No. 4 ( 1999-12), p. 1149-1166
    Abstract: We report nitrogen isotope data for nitrate from transects of hydrocast and surface samples collected in the eastern Indian and Pacific sectors of the Southern Ocean, focusing here on the data from the upper water column to study the effect of nitrate consumption by phytoplankton. The δ 15 N of nitrate increases by 1–2‰ from deep water into the Antarctic summertime surface layer, due to kinetic isotopic fractionation during nitrate uptake. Estimation of the nitrate uptake isotope effect from Antarctic depth profiles yields values in the range of 5–6‰ in east Indian sector and 4–5‰ in the east Pacific sector. Surface transect data from the Pacific sector also yield values of 4–5‰. The major uncertainty in the profile‐based estimation of the isotope effect involves the δ 15 N of nitrate from the temperature minimum layer below the summertime Antarctic surface layer, which deviates significantly from the predictions of simple models of isotope fractionation. For the Subantarctic surface, it is possible to distinguish between nitrate supplied laterally from the surface Antarctic and nitrate supplied vertically from the Subantarctic thermocline because of the distinctive relationships between the δ 15 N and concentration of nitrate in these two potential sources. Our Subantarctic samples, collected during the summer and fall, indicate that nitrate is supplied to the Subantarctic surface largely by northward transport of Antarctic surface water. Isotopic data from the Pacific sector of the Subantarctic suggest an isotope effect of 4.5‰, indistinguishable from the Antarctic estimates in this sector.
    Type of Medium: Online Resource
    ISSN: 0886-6236 , 1944-9224
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1999
    detail.hit.zdb_id: 2021601-4
    SSG: 12
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Copernicus GmbH ; 2012
    In:  Biogeosciences Vol. 9, No. 12 ( 2012-12-03), p. 4897-4908
    In: Biogeosciences, Copernicus GmbH, Vol. 9, No. 12 ( 2012-12-03), p. 4897-4908
    Abstract: Abstract. Fixed nitrogen (N) loss to biogenic N2 in intense oceanic O2 minimum zones (OMZ) accounts for a large fraction of the global N sink and is an essential control on the ocean's N-budget. However, major uncertainties exist regarding microbial pathways as well as net impact on the magnitude of N-loss and the ocean's overall N-budget. Here we report the discovery of a N-loss hotspot in the Peru OMZ associated with a coastally trapped mesoscale eddy that is marked by an extreme N-deficit matched by biogenic N2 production, high NO2− levels, and the highest isotope enrichments observed so far in OMZ's for the residual NO3−. High sea surface chlorophyll in seaward flowing streamers provides evidence for offshore eddy transport of highly productive, inshore water. Resulting pulses in the downward flux of particles likely stimulated heterotrophic dissimilatory NO3− reduction and subsequent production of biogenic N2 within the OMZ. A shallower biogenic N2 maximum within the oxycline is likely a feature advected by the eddy streamer from the shelf. Eddy-associated temporal-spatial heterogeneity of N-loss, mediated by a local succession of microbial processes, may explain inconsistencies observed among prior studies. Similar transient enhancements of N-loss likely occur within all other major OMZ's exerting a major influence on global ocean N and N isotope budgets.
    Type of Medium: Online Resource
    ISSN: 1726-4189
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2012
    detail.hit.zdb_id: 2158181-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Scientific Reports Vol. 7, No. 1 ( 2017-07-06)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2017-07-06)
    Abstract: Nitrous oxide (N 2 O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N 2 O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N 2 O concentrations much higher (up to 115 nmol L −1 ) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N 2 O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N 2 O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N 2 O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N 2 O at the regional scale, and point out the possible need for a reevaluation of how we view N 2 O cycling in the ETNA.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Wiley ; 1985
    In:  Limnology and Oceanography Vol. 30, No. 2 ( 1985-03), p. 444-447
    In: Limnology and Oceanography, Wiley, Vol. 30, No. 2 ( 1985-03), p. 444-447
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Publisher: Wiley
    Publication Date: 1985
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...