GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sensors Vol. 21, No. 21 ( 2021-10-23), p. 7038-
    In: Sensors, MDPI AG, Vol. 21, No. 21 ( 2021-10-23), p. 7038-
    Abstract: Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and treatment can lead to death or brain injury. Current diagnostic approaches include a painful and time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinometers. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye images using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer learning approach based on eye, skin, and fused images. We also trained well-known traditional machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM), decision tree (DT), and random forest (RF), and compared their performance with that of the transfer learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve (AUC) for all the experiments and analyzed their significance statistically. Our results indicate that the transfer learning model performed the best with skin images, while traditional models achieved the best performance with eyes and fused features. Further, we found that the transfer learning model with skin features performed comparably to the MLP model with eye features.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Procedia Computer Science Vol. 177 ( 2020), p. 379-386
    In: Procedia Computer Science, Elsevier BV, Vol. 177 ( 2020), p. 379-386
    Type of Medium: Online Resource
    ISSN: 1877-0509
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2557358-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Sciences, MDPI AG, Vol. 11, No. 1 ( 2020-12-24), p. 89-
    Abstract: Face gender recognition has many useful applications in human–robot interactions as it can improve the overall user experience. Support vector machines (SVM) and convolutional neural networks (CNNs) have been used successfully in this domain. Researchers have shown an increased interest in comparing and combining different feature extraction paradigms, including deep-learned features, hand-crafted features, and the fusion of both features. Related research in face gender recognition has been mostly restricted to limited comparisons of the deep-learned and fused features with the CNN model or only deep-learned features with the CNN and SVM models. In this work, we perform a comprehensive comparative study to analyze the classification performance of two widely used learning models (i.e., CNN and SVM), when they are combined with seven features that include hand-crafted, deep-learned, and fused features. The experiments were performed using two challenging unconstrained datasets, namely, Adience and Labeled Faces in the Wild. Further, we used T-tests to assess the statistical significance of the differences in performances with respect to the accuracy, f-score, and area under the curve. Our results proved that SVMs showed best performance with fused features, whereas CNN showed the best performance with deep-learned features. CNN outperformed SVM significantly at p 〈 0.05.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704225-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...