GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-01-10)
    Abstract: De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF  〈  0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes ( p -value = 1.00 × 10 −5 ) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes ( p -value = 5.01 × 10 −4 ) in contrast to predicted benign de novo mutations. One gene we identify, RBM5 , is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men ( p -value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Human Reproduction, Oxford University Press (OUP), Vol. 36, No. 9 ( 2021-08-18), p. 2597-2611
    Abstract: What are the causative genetic variants in patients with male infertility due to severe sperm motility disorders? SUMMARY ANSWER We identified high confidence disease-causing variants in multiple genes previously associated with severe sperm motility disorders in 10 out of 21 patients (48%) and variants in novel candidate genes in seven additional patients (33%). WHAT IS KNOWN ALREADY Severe sperm motility disorders are a form of male infertility characterised by immotile sperm often in combination with a spectrum of structural abnormalities of the sperm flagellum that do not affect viability. Currently, depending on the clinical sub-categorisation, up to 50% of causality in patients with severe sperm motility disorders can be explained by pathogenic variants in at least 22 genes. STUDY DESIGN, SIZE, DURATION We performed exome sequencing in 21 patients with severe sperm motility disorders from two different clinics. PARTICIPANTS/MATERIALS, SETTING, METHOD Two groups of infertile men, one from Argentina (n = 9) and one from Australia (n = 12), with clinically defined severe sperm motility disorders (motility & lt;5%) and normal morphology values of 0–4%, were included. All patients in the Argentine cohort were diagnosed with DFS-MMAF, based on light and transmission electron microscopy. Sperm ultrastructural information was not available for the Australian cohort. Exome sequencing was performed in all 21 patients and variants with an allele frequency of & lt;1% in the gnomAD population were prioritised and interpreted. MAIN RESULTS AND ROLE OF CHANCE In 10 of 21 patients (48%), we identified pathogenic variants in known sperm assembly genes: CFAP43 (3 patients); CFAP44 (2 patients), CFAP58 (1 patient), QRICH2 (2 patients), DNAH1 (1 patient) and DNAH6 (1 patient). The diagnostic rate did not differ markedly between the Argentinian and the Australian cohort (55% and 42%, respectively). Furthermore, we identified patients with variants in the novel human candidate sperm motility genes: DNAH12, DRC1, MDC1, PACRG, SSPL2C and TPTE2. One patient presented with variants in four candidate genes and it remains unclear which variants were responsible for the severe sperm motility defect in this patient. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION In this study, we described patients with either a homozygous or two heterozygous candidate pathogenic variants in genes linked to sperm motility disorders. Due to unavailability of parental DNA, we have not assessed the frequency of de novo or maternally inherited dominant variants and could not determine the parental origin of the mutations to establish in all cases that the mutations are present on both alleles. WIDER IMPLICATIONS OF THE FINDINGS Our results confirm the likely causal role of variants in six known genes for sperm motility and we demonstrate that exome sequencing is an effective method to diagnose patients with severe sperm motility disorders (10/21 diagnosed; 48%). Furthermore, our analysis revealed six novel candidate genes for severe sperm motility disorders. Genome-wide sequencing of additional patient cohorts and re-analysis of exome data of currently unsolved cases may reveal additional variants in these novel candidate genes. STUDY FUNDING/COMPETING INTEREST(S) This project was supported in part by funding from the Australian National Health and Medical Research Council (APP1120356) to M.K.O.B., J.A.V. and R.I.M.L., The Netherlands Organisation for Scientific Research (918-15-667) to J.A.V., the Royal Society and Wolfson Foundation (WM160091) to J.A.V., as well as an Investigator Award in Science from the Wellcome Trust (209451) to J.A.V. and Grants from the National Research Council of Argentina (PIP 0900 and 4584) and ANPCyT (PICT 9591) to H.E.C. and a UUKi Rutherford Fund Fellowship awarded to B.J.H.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Human Reproduction, Oxford University Press (OUP), Vol. 37, No. 6 ( 2022-05-30), p. 1360-1369
    Abstract: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers ( & lt;35 years of age at conception) and older fathers ( & gt;45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10−7), with on average 71 DNMs in the genomes of children born to young fathers ( & lt;35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers ( & gt;45 years of age). LIMITATIONS, REASONS FOR CAUTION This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
    Type of Medium: Online Resource
    ISSN: 0268-1161 , 1460-2350
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1484864-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of General Medicine, Informa UK Limited, Vol. Volume 14 ( 2021-07), p. 4031-4037
    Type of Medium: Online Resource
    ISSN: 1178-7074
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2452220-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Plastic and Reconstructive Surgery - Global Open, Ovid Technologies (Wolters Kluwer Health), Vol. 10, No. 12 ( 2022-12), p. e4693-
    Abstract: Breast reconstruction (BR) is a unique surgical procedure that provides patients undergoing mastectomy with significant psychosocial and aesthetic benefits and has also become a crucial part of the treatment pathway for women with breast cancer. Due to methodological inadequacies and the absence of substantial risk factor analysis, no conclusion can be drawn about the correlation between risk variables and post-surgical complications in BR surgery. We aim to identify the potential risk factors associated with postoperative complications. Methods: We queried MEDLINE and Cochrane CENTRAL from their inception to March 2022, for published randomized controlled trials and observational studies that assessed complications post-reconstruction procedure in breast cancer patients following mastectomy or evaluated at least one of the following outcomes of major or reoperative complications. The results from the studies were presented as odds ratios with 95% confidence intervals and were pooled using a random-effects model. Results: Our pooled analysis demonstrated a significant correlation with BR postoperative complications and risk factors such as diabetes, hypertension, and obesity. Diabetes and the development of seroma were found to have a significant relationship. Risk variables such as age, radiotherapy, COPD, and smoking had no significant connection with 0-to-30-day readmission and 30-to-90-day readmission. Conclusion: This meta-analysis shows that risk factors like age, smoking history, high blood pressure, and body mass index (BMI) have a big effect on complications after BR, and patients with risk factors have a high rate of developing infection.
    Type of Medium: Online Resource
    ISSN: 2169-7574
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2723993-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...