GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2009
    In:  Blood Vol. 114, No. 22 ( 2009-11-20), p. 477-477
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 477-477
    Abstract: Abstract 477 Activating mutations of FLT3 are frequent in patients with AML. Two types of mutations are most common: Internal tandem duplications (ITD) of the juxtamembrane domain in approximately 30% of patients and point mutations within the second tyrosine kinase domain (TKD) in about 7% of AML patients. Patients carrying the FLT3-ITD mutation have a significantly worse prognosis whereas FLT3-TKD mutations do not appear to influence the clinical outcome. Studies have shown that mice receiving a transplant of bone marrow expressing FLT3 ITD develop a myeloproliferative disease. In contrast, mice which were transplanted with FLT3 TKD infected bone marrow, suffer from a lymphoid disease. Thus, both FLT3 mutations seem to exert different biological functions. Interestingly, FLT3-ITD but not FLT3-TKD or FLT3-WT leads to a strong activation of the STAT5 signaling pathway. Therefore, STAT5 activation may be responsible for the observed differences in biology. Here we investigated the signalling pathways leading to STAT5 activation downstream of FLT3-ITD. FLT3-ITD does not bind STAT5 directly nor does it activate the classical JAK2 pathway. Instead FLT3-ITD utilizes c-Src to activate STAT5. Co-immunoprecipitations and GST pull downs revealed a strong and exclusive interaction between Src and FLT3 ITD, which is mediated by the Src-SH2 domain. This interaction is absent in FLT3-TKD or FLT3-WT after ligand stimulation. The sequence duplication in FLT3-ITD leads to additional potential Src-SH2 binding sites. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for Src binding and subsequent STAT5 activation. Specific Src inhibitors or Src-siRNA blocked STAT5 activation and growth induced by FLT3-ITD but not FLT3-TKD. FLT3-ITD positive cells with a stable Src knockdown injected into syngenic mice led to a leukemic disease with a significant delayed onset and prolonged survival in comparison to the control group. Finally, a combination of FLT3 and Src inhibitors was tested. This combination was highly efficient in FLT3-ITD positive cells but not in FLT-TKD positive cells. Together these findings show that Src plays an important role in the signalling of FLT3-ITD but not FLT3-TKD. Thus, Src might be an interesting therapeutic target for FLT3-ITD positive AML. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-5-13)
    Abstract: The NPM-ALK fusion kinase is expressed in 60% of systemic anaplastic large-cell lymphomas (ALCL). A Nuclear Interaction Partner of ALK (NIPA) was identified as a binding partner of NPM-ALK. To identify the precise role of NIPA for NPM-ALK-driven lymphomagenesis, we investigated various NPM-ALK + cell lines and mouse models. Nipa deletion in primary mouse embryonic fibroblasts resulted in reduced transformation ability and colony formation upon NPM-ALK expression. Downregulating NIPA in murine NPM-ALK + Ba/F3 and human ALCL cells decreased their proliferation ability and demonstrated synergistic effects of ALK inhibition and NIPA knockdown. Comprehensive in vivo analyses using short- and long-latency transplantation mouse models with NPM-ALK + bone marrow (BM) revealed that Nipa deletion inhibited NPM-ALK-induced tumorigenesis with prolonged survival and reduced spleen colonies. To avoid off-target effects, we combined Nipa deletion and NPM-ALK expression exclusively in T cells using a lineage-restricted murine ALCL-like model resembling human disease: control mice died from neoplastic T-cell infiltration, whereas mice transplanted with Lck-Cre TG/wt Nipa flox/flox NPM-ALK + BM showed significantly prolonged survival. Immunophenotypic analyses indicated a characteristic ALCL-like phenotype in all recipients but revealed fewer “stem-cell-like” features of Nipa- deficient lymphomas compared to controls. Our results identify NIPA as a crucial player in effective NPM-ALK-driven ALCL-like disease in clinically relevant murine and cell-based models.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Oncology, Wiley, Vol. 18, No. 2 ( 2024-02), p. 415-430
    Abstract: Tyrosine‐protein kinase (janus kinase; JAK)–signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2‐specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib‐resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM‐JAK2) consisting of the N‐terminal FERM domain directly fused to the C‐terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM‐JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation‐loop tyrosines is dispensable for FERM‐JAK2‐mediated STAT5 activation and cellular transformation, in contrast to JAK2‐V617F. As a result, FERM‐JAK2 is highly resistant to several ATP‐competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM‐JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM‐JAK2, highlighting the urgent need for implementing next‐generation sequencing approaches in MPN patients receiving ruxolitinib.
    Type of Medium: Online Resource
    ISSN: 1574-7891 , 1878-0261
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 2322586-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 8 ( 2011-08-25), p. 2200-2210
    Abstract: Genetic loss-of-function studies in murine tumor models have been essential in the analysis of downstream mediators of oncogenic transformation. Unfortunately, these studies are frequently limited by the availability of genetically modified mouse strains. Here we describe a versatile method allowing the efficient expression of an oncogene and simultaneous knockdown of targets of interest (TOI) from a single retroviral vector. Both oncogene and TOI-specific miR30-based shRNA are under the control of the strong viral long terminal repeat promoter, resulting in a single shared RNA transcript. Using this vector in a murine syngeneic BM transplantation model for BCR-ABL–induced chronic myeloid leukemia, we find that oncogene expression and target knockdown in primary hematopoietic cells with this vector is efficient both in vitro and in vivo, and demonstrate that Raf1, but not BRAF, modulates BCR-ABL–dependent ERK activation and transformation of hematopoietic cells. This expression system could facilitate genetic loss-of-function studies and allow the rapid validation of potential drug targets in a broad range of oncogene-driven murine tumor models.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 2892-2892
    Abstract: Abstract 2892 Activating mutations of FLT3 are frequent in patients with AML. Two types of mutations are most common: Internal tandem duplications (ITD) of the juxtamembrane domain in approximately 30% of patients and point mutations within the second tyrosine kinase domain (TKD) in about 7% of AML patients. Patients carrying the FLT3-ITD mutation have a significantly worse prognosis whereas FLT3-TKD mutations do not appear to influence the clinical outcome. Studies have shown that mice receiving a transplant of bone marrow expressing FLT3 ITD develop a myeloproliferative disease. In contrast, mice which were transplanted with FLT3 TKD infected bone marrow, suffer from a lymphoid disease. Thus, both FLT3 mutations seem to exert different biological functions. Interestingly, FLT3-ITD but not FLT3-TKD or FLT3-WT leads to a strong activation of the STAT5 signaling pathway. Recently we have shown that c-SRC is the crucial signaling mediator of FLT3 ITD to activate STAT5. Based on these findings we investigated the effect of FLT3 inhibitors (Midostaurin, Sorafenib and Sunitinib) in combination with c-SRC inhibitors (Dasatinib and PD166-326) on FLT3 ITD and FLT3 TKD murine and human cell lines as well as on primary patient material. In FLT3 ITD expressing murine myeloid 32D cells c-SRC inhibitors in combination with FLT3 inhibitors showed clear additive effects on growth inhibition, apoptosis and activation of STAT5. In contrast, c-SRC inhibitors had no additional effects in FLT3 TKD expressing cells. Accordingly, a strong additive effect of c-SRC and FLT3 inhibitors could also be demonstrated in the FLT3 ITD positive human AML cell line MV4-11. Finally FLT3 ITD and FLT3 TKD positive primary human AML cells were investigated. We were able to detect a significant additional growth inhibition of FLT3 ITD positive human cells by combining c-SRC and FLT3 inhibitors. In contrast, no further growth inhibition was observed by c-SRC inhibition in primary AML cells expressing the FLT3 TKD mutation. Together our results confirm c-SRC as a crucial signaling mediator in FLT3-ITD but not FLT3-TKD positive AML. The combination of FLT3 and c-SRC inhibitors warrants further investigation in FLT3 ITD positive AML. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3392-3392
    Abstract: Abstract 3392 Introduction: Chronic myelogenous leukemia (CML) is characterized by the t(9;22)(q34;q11) chromosomal translocation and the expression of BCR-ABL, a fusion protein with tyrosine kinase activity. BCR-ABL activates various signaling cascades mediating signals for proliferation, transformation and anti-apoptosis. The BCR-ABL inhibitor imatinib is the standard therapy for CML. However, this treatment is assumed to be not curative since leukemia initiating cells cannot be completely eradicated by solely BCR-ABL inhibition. Identification of key mediators within the BCR-ABL signaling cascade thus remains crucial. The MEK/ERK cascade is one of the major promitogenic pathways activated in CML. Whether Raf-1, BRAF or both Raf isoforms are required for BCR-ABL mediated activation of this pathway is not known. As both Raf-1 and BRAF knockout mice are embryonic lethal, the role of Raf-1 and BRAF in BCR-ABL mediated leukemogenesis has not been investigated in appropriate in vivo models so far. Here we studied the impact of Raf-1 and BRAF for BCR-ABL dependent transformation by using a retroviral vector system, which allows to directly couple shRNA based target suppression to oncogene expression in a CML mouse model. Methods: We exerted an shRNA-based approach in combination with a murine bone marrow transplantation model. To this end we designed a MSCV based retrovirus encoding both the BCR-ABL oncogene and miR-30 based shRNAs (miR) for BRAF and Raf-1 respectively on a single construct resulting in one shared RNA transcript. This approach ensured knockdowns of more than 80–90% for the respective Raf protein in every BCR-ABL transformed cell. Result: Methylcellulose assays showed that primary bone marrow cells coexpressing Raf-1 miR and BCR-ABL had a 2 fold decreased colony forming ability, whereas BRAF knockdown had no impact on colony forming ability compared to control cells. We then transplanted murine bone marrow (BM), transduced with retrovirus coexpressing Raf-1 or BRAF miR and p185 BCR-ABL, to lethally irradiated recipient Balb/C mice. The onset and progression of leukemia was significantly delayed in mice transplanted with Raf-1 miR but not BRAF miR and BCR-ABL compared with the BCR-ABL transduced control miR group. Raf-1 knockdown mice showed only a moderate rise of white blood cell (WBC) counts and prolonged overall survival in comparison to control mice. However, BRAF knockdown had no significant effect on overall survival or disease progression in the bone marrow transduction transplantation model. We hypothesized that this impact of Raf-1 knockdown might be due to incomplete activation of the MEK/ERK cascade in the absence of Raf-1. We could demonstrate that Raf-1 is necessary for BCR-ABL dependent ERK activation in primary murine bone marrow as well as in cell lines. In contrast in BRAF knockdown BCR-ABL positive cells levels of phosphorylated and thereby activated ERK remained unchanged compared to control cells, indicating that BRAF is dispensable for BCR-ABL dependent ERK phosphorylation. Conclusion: Taken together our data demonstrate that primarily Raf-1 is responsible for BCR-ABL mediated activation of the promitogenic MEK/ERK signaling cascade. Raf-1 but not BRAF is also crucial for the development of a myeloproliferative disease by BCR-ABL in mice. Therefore, Raf-1 but not BRAF inhibition may be a potential interesting additional therapeutic approach in CML.The coexpression of an oncogene and a target specific miR-30 based shRNA from a single retroviral construct displays a powerful tool that can be used to systematically screen drugable signaling targets involved in CML and other leukemic malignancies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 119, No. 17 ( 2012-04-26), p. 4026-4033
    Abstract: Mutations of Fms-like tyrosine kinase 3 (FLT3) are among the most frequently detected molecular abnormalities in AML patients. Internal tandem duplications (ITDs) are found in approximately 25% and point mutations within the second tyrosine kinase domain (TKD) in approximately 7% of AML patients. Patients carrying the FLT3-ITD but not the FLT3-TKD mutation have a significantly worse prognosis. Therefore, both FLT3 mutations seem to exert different biologic functions. FLT3-ITD but not FLT3-TKD has been shown to induce robust activation of the STAT5 signaling pathway. In the present study, we investigated the mechanisms leading to differential STAT5 activation and show that FLT3-ITD but not FLT3-TKD uses SRC to activate STAT5. Coimmunoprecipitation and pull-down experiments revealed an exclusive interaction between SRC but not other Src family kinases and FLT3-ITD, which is mediated by the SRC SH2 domain. We identified tyrosines 589 and 591 of FLT3-ITD to be essential for SRC binding and subsequent STAT5 activation. Using site-specific Abs, we found that both residues were significantly more strongly phosphorylated in FLT3-ITD compared with FLT3-TKD. SRC inhibition and knock-down blocked STAT5 activation and proliferation induced by FLT3-ITD but not by FLT3-TKD. We conclude that SRC might be a therapeutic target in FLT3-ITD+ AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 39, No. 15_suppl ( 2021-05-20), p. 9036-9036
    Abstract: 9036 Background: The nNGM centralizes molecular diagnostics, treatment recommendations and follow-up reporting in NSCLC in Germany. Uncommon EGFR mutations pose a clinical challenge because they comprise a heterogenous group and analyses of treatment outcome are still scarce. Here, we analyzed follow-up data of patients with rare EGFR mutations and performed functional characterization of recurrent mutations with unknown function. Methods: This multicenter, retrospective analysis of uncommon EGFR mutations (excluding L858R-, T790M mutations and exon 19 deletions) includes stage IV patients with NSCLC from 12 nNGM centers. We categorized EGFR-mutations into 3 groups: uncommon EGFR mutations with known driver function, for instance E709X, G719X, S768I and L861Q (group 1), exon 20 insertions (group 2) and all other very rare mutations (group 3). Functional characterization of unknown mutations was performed by insertion mutagenesis in Ba/F3 cells and monitoring of growth factor-independent proliferation. Results: In total, 834 cases with uncommon EGFR mutations were reported. Follow-up data after EGFR-TKI (Erlotinib, Gefitinib, Afatinib and Osimertinib), chemotherapy and/or mono-PD(L)1 blockade was available for 252 patients. Mean progression free survival (mPFS) on EGFR-TKIs vs. chemotherapy was 6.6 months vs. 5.0 months (HR 0.54, 95%CI 0.35 to 0.81, P =.003) in group 1 (n = 84), and 6.7 months vs. 3.4 months (HR 0.66, 95%CI 0.47 to 0.92, P =.015) in group 3 (n = 104). Mono-anti-PD(L1) blockade was not superior to chemotherapy (group 1, mPFS 3.0 months, HR 1.32, 95% 0.55 – 3.15, P =.535 and group3, mPFS 4.3 months, HR 1.02, 95% CI 0.64 – 1.62, P = 0.951). Exon 20 insertions (group 2, n = 63) did not benefit from EGFR-TKIs or anti-PD(L1) blockade vs. chemotherapy. Overall survival (OS) analysis (n = 218) following chemotherapy (56%) or EGFR-TKI treatment (44%) showed median OS (mOS) of 18.0 months vs. 13.9 months in patients treated with EGFR-TKI and chemotherapy, respectively in group 1 (HR 0.97, 95%CI 0.54 to 1.75, P =.929). In group 3 patients treated with EGFR-TKI and chemotherapy had a mOS of 35.4 months vs. 12.0 months, respectively (HR 0.59, 95%CI 0.35 to 1.01, P =.056). In the Ba/F3 system we could identify 8 recurrent driver and 12 non-driver mutations with a clinically applicable assay turnaround time of 4 weeks to inform clinical decision-making in the future. Conclusions: This real-world dataset confirms that patients with group 1(uncommon) EGFR mutations benefit from EGFR-TKIs and indicates that mono-anti PD(L)1 blockade is not superior to chemotherapy. Furthermore, patients with very rare EGFR mutations (group 3) also experienced a PFS benefit from EGFR-TKI compared to chemotherapy while immune therapy was not beneficial.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2021
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...