GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 12, No. 3 ( 2021-03-04)
    Abstract: Triple-negative breast cancer (TNBC) patients with upregulated Wnt/β-catenin signaling often have poor clinical prognoses. During pathological examinations of breast cancer sections stained for β-catenin, we made the serendipitous observation that relative to non-TNBC, specimens from TNBC patients have a greater abundance of nucleoli. There was a remarkable direct relationship between nuclear β-catenin and greater numbers of nucleoli in TNBC tissues. These surprising observations spurred our investigations to decipher the differential functional relevance of the nucleolus in TNBC versus non-TNBC cells. Comparative nucleolar proteomics revealed that the majority of the nucleolar proteins in TNBC cells were potential targets of β-catenin signaling. Next, we undertook an analysis of the nucleolar proteome in TNBC cells in response to β-catenin inhibition. This effort revealed that a vital component of pre-rRNA processing, LAS1 like ribosome biogenesis factor (LAS1L) was significantly decreased in the nucleoli of β-catenin inhibited TNBC cells. Here we demonstrate that LAS1L protein expression is significantly elevated in TNBC patients, and it functionally is important for mammary tumor growth in xenograft models and enables invasive attributes. Our observations highlight a novel function for β-catenin in orchestrating nucleolar activity in TNBCs.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 11, No. 5 ( 2023-05-03), p. 687-702
    Abstract: The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2732517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 2103-2103
    Abstract: In the United States, a woman has a 12% chance of developing breast cancer, and current treatments offer little relief to patients diagnosed with metastatic disease. Tumorigenesis and successful establishment of metastases depend upon tumor cell interactions with the surrounding immune microenvironment. Elevated tumor infiltration of immunosuppressive (M2) macrophages correlates with poor prognosis of breast cancer patients. The tumor microenvironment remarkably orchestrates molecular mechanisms that program these macrophages toward the M2 phenotype. Also, metabolic programming is instrumental in orchestrating the polarization of macrophages to assume an M1 (tumor-eradicating) or an M2 (tumor-promoting) phenotype. Aberrant activation of Hedgehog (Hh) signaling in breast cancer cells enables them to survive, proliferate, and metastasize, thus making it a promising target for breast cancer treatment. Hh signaling also enables a crosstalk between breast cancer cells and cells in their milieu, thus contributing to M2 macrophage polarization. We used two immunocompetent orthotopic mouse models of mammary tumors to test the effect of inhibiting Hh signaling on tumor-associated macrophages, and discovered that treatment with the pharmacologic Hh inhibitor, Vismodegib, induced a significant shift in the profile of tumor-infiltrating macrophages. We hypothesized that Hh activity calibrates the metabolism in macrophages, leading to enhanced M2 phenotype and function within the tumor microenvironment. Using a mass spectrometry-enabled untargeted metabolomics approach, we identified that inhibiting Hh signaling reduces flux through the hexosamine biosynthetic pathway, resulting in reduced cellular O-GlcNAcylation in M2 macrophages. This impinges upon diminished STAT6 O-GlcNAcylation, which consequently decreases fatty acid oxidation and ultimately enacts a metabolic cascade including lipid utilization, cellular bioenergetics, and mitochondrial dynamics. As such, inhibiting Hh activity mitigates the metabolomic and bioenergetic underpinnings of the immunosuppressive program of M2 macrophages, resulting in macrophages that are functionally and phenotypically reminiscent of inflammatory, anti-tumor macrophages. In conclusion, we discovered a novel role for Hh signaling in promoting polarization of tumor-associated macrophages to the M2 type through recalibrating their metabolic circuitries, ultimately leading to diminished M2 phenotype and function within the tumor microenvironment. This is the first evidence highlighting the relevance of Hh signaling in controlling a complex metabolic network in immune cells. This knowledge will help us to better understand how to target and diminish the pro-tumorigenic functions of tumor-infiltrating macrophages. Citation Format: Dominique C. Hinshaw, Ann Hanna, Tshering Lama-Sherpa, Brandon Metge, Sarah C. Kammerud, Gloria A. Benavides, Atul Kumar, Heba A. Alsheikh, Mateus Mota, Dongquan Chen, Scott Ballinger, Jeffrey C. Rathmell, Selvarangan Ponnazhagan, Victor Darley-Usmar, Rajeev S. Samant, Lalita A. Shevde. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 2103.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: npj Precision Oncology, Springer Science and Business Media LLC, Vol. 7, No. 1 ( 2023-06-28)
    Abstract: Hyperactivated ribosome biosynthesis is attributed to a need for elevated protein synthesis that accommodates cell growth and division, and is characterized by nucleomorphometric alterations and increased nucleolar counts. Ribosome biogenesis is challenged when DNA-damaging treatments such as radiotherapy are utilized. Tumor cells that survive radiotherapy form the basis of recurrence, tumor progression, and metastasis. In order to survive and become metabolically revitalized, tumor cells need to reactivate RNA Polymerase I (RNA Pol I) to synthesize ribosomal RNA, an integral component of ribosomes. In this study, we showed that following radiation therapy, tumor cells from breast cancer patients demonstrate activation of a ribosome biosynthesis signature concurrent with enrichment of a signature of Hedgehog (Hh) activity. We hypothesized that GLI1 activates RNA Pol I in response to irradiation and licenses the emergence of a radioresistant tumor population. Our work establishes a novel role for GLI1 in orchestrating RNA Pol I activity in irradiated breast cancer cells. Furthermore, we present evidence that in these irradiated tumor cells, Treacle ribosome biogenesis factor 1 (TCOF1), a nucleolar protein that is important in ribosome biogenesis, facilitates nucleolar translocation of GLI1. Inhibiting Hh activity and RNA Pol I activity disabled the outgrowth of breast cancer cells in the lungs. As such, ribosome biosynthesis and Hh activity present as actionable signaling mechanisms to enhance the effectiveness of radiotherapy.
    Type of Medium: Online Resource
    ISSN: 2397-768X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2891458-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Oncology, Wiley, Vol. 15, No. 4 ( 2021-04), p. 942-956
    Abstract: The expression of Merlin tumor suppressor protein encoded by Neurofibromin 2 ( NF2 ) gene is remarkably decreased in metastatic breast cancer tissues. In order to recapitulate clinical evidence, we generated a unique, conditional Nf2 ‐knockout ( Nf2 −/− ) mouse mammary tumor model. Merlin‐deficient breast tumor cells and Nf2 −/− mouse embryonic fibroblasts (MEFs) displayed a robustly invasive phenotype. Moreover, Nf2 −/− MEFs presented with notable alterations in redox management networks, implicating a role for Merlin in redox homeostasis. This programmatic alteration resonated with pathways that emerged from breast tumor cells engineered for Merlin deficiency. Further investigations revealed that NF2 ‐silenced cells supported reduced activity of the Nuclear factor, erythroid 2 like 2 antioxidant transcription factor, concomitant with elevated expression of NADPH oxidase enzymes. Importantly, mammary‐specific Nf2 −/− in an Mouse mammary tumor virus Neu + murine breast cancer model demonstrated accelerated mammary carcinogenesis in vivo . Tumor‐derived primary organoids and cell lines were characteristically invasive with evidence of a dysregulated cellular redox management system. As such, Merlin deficiency programmatically influences redox imbalance that orchestrates malignant attributes of mammary/breast cancer.
    Type of Medium: Online Resource
    ISSN: 1574-7891 , 1878-0261
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2322586-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2023
    In:  Cancer Research Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3596-3596
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3596-3596
    Abstract: The ribosome, a multi-subunit RNA-protein complex, is essential for translation in all cells. Variation in ribosome composition and characteristics has been observed between cell types and under different metabolic conditions; this phenomenon is referred to as "ribosome heterogeneity." Ribosome heterogeneity has been linked to carcinogenesis and cancer progression. One of the major layers of ribosome heterogeneity is the diverse rRNA modifications. To study the impact of rRNA modifications on cancer, we performed a systematic literature search and identified 22 rRNA modifying proteins (RRMPs) that are involved in mediating different modifications of rRNA. We next examined the RRMPs' expression levels and frequency of mutation in different cancer types, with a focus on breast cancer. We see that most malignancies show alterations in RRMPs' expression levels and frequent mutations. Our analysis of gene expression patterns and clinical outcomes in breast cancer has shown that several RRPMs are strongly linked to an aggressive phenotype and a poor prognosis. Our analysis also revealed that EMG1, a N1-specific psuedouridine methyltransferase, is a RRMP with potential roles in cancer progression and metastasis. Our findings pave the way for further research into the role of RRMPs in different cancers as well as the development of therapies that specifically target RRMPs involved in cancer progression. Citation Format: Amr R. Elhamamsy, Heba A. Alsheikh, Rajeev S. Samant, Lalita A. Shevde. EMG1 is an rRNA-modifying protein that contributes to breast cancer progression. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3596.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Cancer Research Vol. 80, No. 4_Supplement ( 2020-02-15), p. P3-01-14-P3-01-14
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 4_Supplement ( 2020-02-15), p. P3-01-14-P3-01-14
    Abstract: Delicate balance between cellular plasticity and differentiation is critically maintained during mammary development. Disruption of this balance leads to breast cancer initiation and metastatic progression. Recent findings from our lab have revealed that N-Myc and STAT Interactor (NMI) protein is decreased in 70% of primary patient specimens with metastatic breast cancer. Mammary specific Nmi knock out mouse model revealed that conditional Nmi loss disrupts luminal differentiation in the mammary gland affecting alveologenesis and prompted the progression of tumors with aggressive metastatic characteristics. Our studies showed that Nmi is induced at the onset of pregnancy and its expression remains throughout lactation. Furthermore, prolactin stimulation and differentiation of HC11 murine mammary epithelial cells is accompanied by up-regulation of Nmi. STAT5a is one of the downstream effector of prolactin and is essential for differentiation of secretory alveolar epithelium. However, functional relationship of NMI and STAT5a was not known. Here we present our finding that NMI and STAT5a expression has a direct relationship in normal mammary development as well as in breast primary and metastatic tumor specimens. We demonstrate that loss of Nmi in vivo caused a decrease in STAT5a activity and a subsequent transcriptomic shift in mammary epithelial and breast cancer cells. Detailed examination of STAT5a mammary specific controlled genetic program in the context of transcription profiles of NMI knockout and overexpressing cell lines as well as mammary tumors revealed ISG20, interferon stimulated exonuclease gene 20, as a unique negatively regulated transcript. Here we show that expression of ISG20 is kept in check by NMI by miR17-92 cluster and that ISG20 has a positive influence on tumor progression and metastasis. Citation Format: Rajeev Sharad Samant, Heba A Alsheikh, Brandon J Metge, Dongquan Chen, Shi Wei, Lalita A Shevde. N-Myc and STAT interactor regulates STAT5a in mammary development and metastasis [abstract]. In: Proceedings of the 2019 San Antonio Breast Cancer Symposium; 2019 Dec 10-14; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2020;80(4 Suppl):Abstract nr P3-01-14.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 1 ( 2022-01-01), p. 150-160
    Abstract: Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. Implications: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Laboratory Investigation, Elsevier BV, Vol. 101, No. 11 ( 2021-11), p. 1439-1448
    Type of Medium: Online Resource
    ISSN: 0023-6837
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2041329-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2022
    In:  Cancer Research Vol. 82, No. 13 ( 2022-07-05), p. 2344-2353
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 13 ( 2022-07-05), p. 2344-2353
    Abstract: Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...