GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine Policy, Elsevier BV, Vol. 134 ( 2021-12), p. 104776-
    Type of Medium: Online Resource
    ISSN: 0308-597X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1500650-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Marine Mammal Science, Wiley, Vol. 33, No. 1 ( 2017-01), p. 59-79
    Abstract: Toothed whales use a pneumatic sound generator to produce echolocation and communication sounds. Increasing hydrostatic pressure at depth influences the amplitude and duration of calls but not of echolocation clicks. Here we test the hypothesis that information transfer at depth might be facilitated by click‐based communication signals. Wild short‐finned pilot whales (27) instrumented with multisensor DTAG s produced four main types of communication signals: low‐ and medium‐frequency calls (median fundamental frequency: 1.7 and 2.9 kHz), two‐component calls (median frequency of the low and high frequency components: 2 and 9 kHz), and rasps (burst‐pulses with median interclick interval of 21 ms). Rasps can be confused with foraging buzzes, but rasps are shorter and slower, and are not associated with fast changes in body acceleration nor reduced acoustic output of buzzes, characteristic of prey capture attempts. Contrary to calls, the energy flux density of rasps was not significantly affected by depth. This, and a different information content, may explain the observed increase in the relative occurrence of rasps with respect to calls at depth, and supports the hypothesis that click‐based communication signals may facilitate communication under high hydrostatic pressure. However, calls are produced at depth also, indicating that they may carry additional information relevant for deep‐diving animals, including potential communication among whales diving at the same time in this highly social deep‐diving species.
    Type of Medium: Online Resource
    ISSN: 0824-0469 , 1748-7692
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 12787-5
    detail.hit.zdb_id: 2218018-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Marine Mammal Science Vol. 38, No. 3 ( 2022-07), p. 1104-1117
    In: Marine Mammal Science, Wiley, Vol. 38, No. 3 ( 2022-07), p. 1104-1117
    Abstract: Large predators typically feed on proportionally sized prey but the world's largest animals, baleen whales, bulk feed on plankton and small fishes. While most baleen whales migrate to feed on polar aggregations of nutritious zooplankton prey, Bryde's whales ( Balaenoptera edeni brydei and B. e. edeni ) inhabit less productive warm‐temperate waters with variable prey abundance and quality. Off New Zealand, Bryde's whales target both fish and zooplankton, some with lower calorific value. We use multisensor tags ( n  = 4) and visual observations from drones and boats ( n  = 52) to reveal that Bryde's whales employ specialized feeding tactics matched to prey type. Zooplankton‐feeding at the surface involved multiple head‐slaps that presumably aggregate zooplankton followed by a side‐lunge. Whales exploiting plankton patches swam in tight circles, performing up to 33 lunges ( M  = 5.5 ± 6.1) per feeding bout. In contrast, whales targeting fish performed faster vertical lunges. With both prey types, whales concluded lunges with a ~90° roll probably to minimize prey escape at the surface. The diet plasticity and dynamic behaviors of Bryde's whales are key to increasing their foraging efficiency. This may be essential for the whales to meet energetic demands year‐round with a variety of prey in New Zealand waters.
    Type of Medium: Online Resource
    ISSN: 0824-0469 , 1748-7692
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 12787-5
    detail.hit.zdb_id: 2218018-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Scientific Reports Vol. 10, No. 1 ( 2020-02-06)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-02-06)
    Abstract: Fear of predation can induce profound changes in the behaviour and physiology of prey species even if predator encounters are infrequent. For echolocating toothed whales, the use of sound to forage exposes them to detection by eavesdropping predators, but while some species exploit social defences or produce cryptic acoustic signals, deep-diving beaked whales, well known for mass-strandings induced by navy sonar, seem enigmatically defenceless against their main predator, killer whales. Here we test the hypothesis that the stereotyped group diving and vocal behaviour of beaked whales has benefits for abatement of predation risk and thus could have been driven by fear of predation over evolutionary time. Biologging data from 14 Blainville’s and 12 Cuvier’s beaked whales show that group members have an extreme synchronicity, overlapping vocal foraging time by 98% despite hunting individually, thereby reducing group temporal availability for acoustic detection by killer whales to 〈 25%. Groups also perform a coordinated silent ascent in an unpredictable direction, covering a mean of 1 km horizontal distance from their last vocal position. This tactic sacrifices 35% of foraging time but reduces by an order of magnitude the risk of interception by killer whales. These predator abatement behaviours have likely served beaked whales over millions of years, but may become maladaptive by playing a role in mass strandings induced by man-made predator-like sonar sounds.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Scientific Reports Vol. 3, No. 1 ( 2013-10-03)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2013-10-03)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: eLife, eLife Sciences Publications, Ltd, Vol. 10 ( 2021-10-26)
    Abstract: In the animal world, split-second decisions determine whether a predator eats, or its prey survives. There is a strong evolutionary advantage to fast reacting brains and bodies. For example, the eye muscles of hunting cheetahs must lock on to a gazelle and keep track of it, no matter how quickly or unpredictably it moves. In fact, in monkeys and primates, these muscles can react to sudden movements in as little as 50 milliseconds – faster than the blink of an eye. But what about animals that do not rely on vision to hunt? To find food at night or in the deep ocean, whales and porpoises make short ultrasonic sounds, or ‘clicks’, and then listen for returning echoes. As they close in on a prey, they need to click faster to get quicker updates on its location. What is unclear is how fast they react to the echoes. Just before a kill, a harbour porpoise can click over 500 times a second: if they wait for the echo from one click before making the next one, they would need responses 100 times faster than human eyes. Exploring this topic is difficult, as it requires tracking predator and prey at the same time. Vance et al. took up the challenge by building sound and movement recorders that attach to whales with suction cups. These were used on two different hunters: deep-diving beaked whales and shallow-hunting harbour porpoises. Both species adapted their click rate depending on how far they were from their prey, but their response times were similar to visual responses in monkeys and humans. This means that whales and porpoises do not act on each echo before clicking again: instead, they respond to groups of tens of clicks at a time. This suggests that their brains may be wired in much the same way as the ones of visual animals. In the ocean, increased human activity creates a dangerous noise pollution that disrupts the delicate hunting mechanism of whales and porpoises. Better understanding how these animals find their food may therefore help conservation efforts.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2021
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2006
    In:  The Journal of the Acoustical Society of America Vol. 119, No. 5_Supplement ( 2006-05-01), p. 3372-3372
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 119, No. 5_Supplement ( 2006-05-01), p. 3372-3372
    Abstract: Sperm and beaked whales are deep-diving toothed whales whose echolocation behavior has been studied using tags that record sound and whale orientation. Combining orientation data from tagged clicking whales with acoustic localization data from a towed hydrophone array allowed measurement of the three-dimensional beam pattern of regular clicks from sperm whales. These data confirm Mohl’s bent horn hypothesis for sound production in sperm whales. During deep foraging dives, beaked whales produce several thousand regular clicks with interclick intervals (ICI) between 0.2 and 0.4 s. These search clicks have a distinctive FM upsweep from 25 to 55 kHz and a pulse length of 200–250 μs. The process of echolocating on prey can be divided into search, approach, and capture phases. The approach phase starts when a series of echoes from prey is detected. The capture phase starts when the target is about 2–5 m away, with a terminal buzz with click rates to ICIs of about 0.01 s. Tagged whales do not adjust their ICI to match range to target, nor do they adjust click level to maintain a constant echo level, but rather have a bimodal echolocation pattern using two kinds of clicks each with a typical ICI.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2006
    detail.hit.zdb_id: 1461063-2
    detail.hit.zdb_id: 219231-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The Company of Biologists ; 2016
    In:  Journal of Experimental Biology ( 2016-01-01)
    In: Journal of Experimental Biology, The Company of Biologists, ( 2016-01-01)
    Abstract: Studies of locomotion kinematics require high-resolution information about body movements and the specific acceleration (SA) that these generate. On-animal accelerometers measure both orientation and SA but an additional orientation sensor is needed to accurately separate these. Although gyroscopes can perform this function, their power consumption, drift and complex data processing make them unattractive for biologging. Lower power magnetometers can also be used with some limitations. Here, we present an integrated and simplified method for estimating body rotations and SA applicable to both gyroscopes and magnetometers, enabling a direct comparison of these two sensors. We use a tag with both sensors to demonstrate how caudal-oscillation rate and SA are adjusted by a diving whale in response to rapidly changing buoyancy forces as the lungs compress while descending. Both sensors gave similar estimates of the dynamic forces demonstrating that magnetometers may offer a simpler low-power alternative for miniature tags in some applications.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2016
    detail.hit.zdb_id: 1413561-9
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biological Conservation, Elsevier BV, Vol. 186 ( 2015-06), p. 149-157
    Type of Medium: Online Resource
    ISSN: 0006-3207
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 1496231-7
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2014
    In:  Current Biology Vol. 24, No. 16 ( 2014-08), p. R728-R730
    In: Current Biology, Elsevier BV, Vol. 24, No. 16 ( 2014-08), p. R728-R730
    Type of Medium: Online Resource
    ISSN: 0960-9822
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 1071731-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...