GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Biological Research, Springer Science and Business Media LLC, Vol. 56, No. 1 ( 2023-02-17)
    Abstract: Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. Results The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb ( F. auricularia ) and 0.94 Gb ( E. annulipes ) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. Conclusions This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.
    Type of Medium: Online Resource
    ISSN: 0717-6287
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2048380-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Environmental Microbiome, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2023-03-28)
    Abstract: Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400–4500 m a.s.l.) of the Talabre–Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. Results Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. Conclusions In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
    Type of Medium: Online Resource
    ISSN: 2524-6372
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 3007163-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biological Research, Springer Science and Business Media LLC, Vol. 56, No. 1 ( 2023-06-24)
    Abstract: High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. Methods Five sites closely located ( 〈 1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. Results Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. Conclusions The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.
    Type of Medium: Online Resource
    ISSN: 0717-6287
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2048380-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: New Phytologist, Wiley, Vol. 234, No. 6 ( 2022-06), p. 2126-2139
    Abstract: The discovery and characterization of plant species adapted to extreme environmental conditions have become increasingly important. Hoffmannseggia doellii is a perennial herb endemic to the Chilean Atacama Desert that grows in the western Andes between 2800 and 3600 m above sea level. Its growing habitat is characterized by high radiation and low water and nutrient availability. Under these conditions, H .  doellii can grow, reproduce, and develop an edible tuberous root. We characterized the H. doellii soil‐associated microbiomes to understand the biotic factors that could influence their surprising ability to survive. We found an increased number of observed species and higher phylogenetic diversity of bacteria and fungi on H .  doellii root soils compared with bare soil (BS) along different sites and to soil microbiomes of other plant species. Also, the H .  doellii ‐associated microbiome had a higher incidence of overall positive interactions and fungal within‐kingdom interactions than their corresponding BS network. These findings suggest a microbial diversity soil modulation mechanism that may be a characteristic of highly tolerant plants to diverse and extreme environments. Furthermore, since H .  doellii is related to important cultivated crops, our results create an opportunity for future studies on climate change adaptation of crop plants.
    Type of Medium: Online Resource
    ISSN: 0028-646X , 1469-8137
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 208885-X
    detail.hit.zdb_id: 1472194-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...