GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 567-567
    Abstract: Colorectal cancer (CRC) is the 2nd cause of cancer-related death. Despite standard therapies, more than 50% of patients experience relapse, eventually with metastatic disease. The CRC microenvironment is densely infiltrated by T-cells, which presence correlates with improved overall survival, thus sustaining the rational for immunotherapy. Here, we paired high-dimensional flow cytometry, bulk RNA sequencing and immunohistochemistry to describe the phenotype and the exhaustion status of T-cells infiltrating primary and metastatic CRC. Analysis of the healthy, peritumoral and neoplastic tissues of treatment-naïve primary CRCs and of the peritumoral and tumoral tissues of CRC patients undergoing surgery for liver metastasis, revealed extensive transcriptional and spatial remodeling across tumors. Unsupervised analysis of flow cytometry data performed by an advanced pipeline of data handling by dimensionality reduction and clustering algorithms allowed the definition of a peculiar inhibitory receptors signature on TILs enriched both in primary CRCs and liver metastases. Of note, CD39 was upregulated in both the signatures retrieved from primary and metastatic CRC, thus suggesting its relevance as molecular target for T-cells engineering. By CRISPR/Cas9 we disrupted the CD39 gene in T cells with & gt;80% efficiency. We combined CD39 knock-out with the genetic disruption of alpha and beta chains of the endogenous TCR, observing & gt;90% efficiency for both genes, thus generating triple-knockout T-cells. By repetitively stimulating healthy donors’ peripheral blood mononuclear cells with autologous antigen-presenting cells loaded with a pool of peptides selected to be immunogenic and expressed by CRC, we obtained a library of anti-tumor TCRs to redirected the specificity of triple knock-out lymphocytes. Our preliminary experiments showed a functional advantage for TCR-redirected, CD39 disrupted T-cells in recognizing and killing CRC target cells. Citation Format: Alessia Potenza, Chiara Balestrieri, Luca Albarello, Federica Pedica, Lorena Stasi, Francesco Manfredi, Martina Spiga, Elena Tassi, Beatrice Claudia Cianciotti, Danilo Abbati, Ugo Elmore, Andrea Biondi, Luca Aldrighetti, Claudia De Lalla, Giulia Di Lullo, Paolo Dellabona, Eliana Ruggiero, Riccardo Rosati, Chiara Bonini. CRISPR/Cas9-mediated CD39 disruption can be combined with TCR editing in T cells to improve the adoptive T cell therapy of colorectal cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 567.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 14 ( 2023-10-4)
    Abstract: Despite predicted efficacy, immunotherapy in epithelial ovarian cancer (EOC) has limited clinical benefit and the prognosis of patients remains poor. There is thus a strong need for better identifying local immune dynamics and immune-suppressive pathways limiting T-cell mediated anti-tumor immunity. Methods In this observational study we analyzed by immunohistochemistry, gene expression profiling and flow cytometry the antigenic landscape and immune composition of 48 EOC specimens, with a focus on tumor-infiltrating lymphocytes (TILs). Results Activated T cells showing features of partial exhaustion with a CD137 + CD39 + PD-1 + TIM-3 + CD45RA - CD62L - CD95 + surface profile were exclusively present in EOC specimens but not in corresponding peripheral blood or ascitic fluid, indicating that the tumor microenvironment might sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed several tumor-associated antigens possibly able to stimulate tumor-specific TILs, macrophages provided both co-stimulatory and inhibitory signals and were more abundant in TILs-enriched specimens harboring the CD137 + CD39 + PD-1 + TIM-3 + CD45RA - CD62L - CD95 + signature. Conclusion These data demonstrate that EOC is enriched in CD137 + CD39 + PD-1 + TIM-3 + CD45RA - CD62L - CD95 + T lymphocytes, a phenotype possibly modulated by antigen recognition on neoplastic cells and by a combination of inhibitory and co-stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we have identified immunosuppressive pathways potentially hampering local immunity which might be targeted by immunotherapeutic approaches.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 902-902
    Abstract: Colorectal cancer (CRC) is the 2nd cause of cancer-related death. Standard therapies often fail, with more than 50% of patients experiencing relapse, eventually with metastatic disease. Colorectal tumors are densely infiltrated by immune cells that have a role in surveillance and modulation of tumor progression. However, exhaustion mechanisms acting within the tumor microenvironment impede their functional capacity against tumor cells. We paired high-dimensional flow cytometry, RNA sequencing, immunohistochemistry and immunofluorescence to describe the T cell functional landscape in tumor and peritumoral tissues from primary colorectal cancers and liver metastases. Analysis of the healthy, peritumoral and neoplastic tissues of treatment-naïve primary CRCs and of the peritumoral and tumoral tissues of CRC patients undergoing surgery for liver metastasis, revealed extensive transcriptional and spatial remodeling across tumors, being metabolic pathways among the major drivers of this variance. Regarding the immune infiltrate, we found that T cells are mainly localized at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors. Unsupervised analysis of flow cytometry data performed by an advanced pipeline of data handling by dimensionality reduction and clustering algorithms allowed the definition of a peculiar inhibitory receptors signature in TILs enriched both in primary CRCs and liver metastases. Among the highly co-expressed inhibitory receptors, CD39 was found to represent the major driver of exhaustion in both primary and metastatic colorectal tumors. CD39 is a diphosphohydrolase converting ATP into AMP that is emerging as exhaustion marker for tumor-specific T cells, thus highlighting its relevance as molecular target for T cells engineering. We leveraged on these findings to generate a novel cellular product for the adoptive cell therapy of CRC. By CRISPR/Cas9 genome editing tools, we simultaneously redirected T cell specificity by disrupting the alpha and beta genes of the endogenous T cell receptor with 90% efficiency for both genes, and disrupted CD39 with 100% efficiency, generating triple-knockout engineered lymphocytes. By lentiviral transduction, we redirected the specificity of our engineered T cell product employing a novel T-cell receptor targeting the HER-2 antigen. Triple-edited, HER2-redirected T cells were challenged in vitro against HER2+ patient-derived organoids from liver metastases (mPDOs). Measurement of Cas3/7 displayed a functional advantage for CD39-disrupted, HER2-redirected T cells in recognizing and killing mPDOs. We then evaluated the efficacy of our T cell product in two different in vivo models: subcutaneous injection of mPDOs, and intra-hepatic injection of mPDOs. In both models, CD39-disrupted, HER2-redirected T cells displayed a superior capacity of controlling tumor outgrowth long term. Citation Format: Alessia Potenza, Chiara Balestrieri, Luca Albarello, Federica Pedica, Martina Spiga, Francesco Manfredi, Beatrice C. Cianciotti, Claudia De Lalla, Lorena Stasi, Elena Tassi, Silvia Bonfiglio, Giulia M. Scotti, Miriam Redegalli, Donatella Biancolini, Danilo Abbati, Fabio Simeoni, Dejan Lazarevic, Ugo Elmore, Guido Fiorentini, Giulia Di Lullo, Giulia Casorati, Claudio Doglioni, Giovanni Tonon, Paolo Dellabona, Riccardo Rosati, Luca Aldrighetti, Eliana Ruggiero, Chiara Bonini. Harnessing CD39 for the treatment of colorectal cancer and liver metastases by engineered T cells [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 902.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 6 ( 2022-10-06), p. 1530-1543
    Abstract: After allogeneic hematopoietic stem cell transplantation (HSCT), the emergence of circulating cytomegalovirus (CMV)- specific T cells correlates with protection from CMV reactivation, an important risk factor for non-relapse mortality. However, functional assays measuring CMV-specific cells are time-consuming and often inaccurate at early time-points. We report the results of a prospective single-center, non-interventional study that identified the enumeration of Dextramerpositive CMV-specific lymphocytes as a reliable and early predictor of viral reactivation. We longitudinally monitored 75 consecutive patients for 1 year after allogeneic HSCT (n=630 samples). The presence of ≥0.5 CMV-specific CD8+ cells/mL at day +45 was an independent protective factor from subsequent clinically relevant reactivation in univariate (P 〈 0.01) and multivariate (P 〈 0.05) analyses. Dextramer quantification correlated with functional assays measuring interferon-γ production, and allowed earlier identification of high-risk patients. In mismatched transplants, the comparative analysis of lymphocytes restricted by shared, donor- and host-specific HLA revealed the dominant role of thymic-independent CMV-specific reconstitution. Shared and donor-restricted CMV-specific T cells reconstituted with similar kinetics in recipients of CMV-seropositive donors, while donor-restricted T-cell reconstitution from CMV-seronegative grafts was impaired, indicating that in primary immunological responses the emergence of viral-specific T cells is largely sustained by antigen encounter on host infected cells rather than by cross-priming/presentation by non-infected donor-derived antigen-presenting cells. Multiparametric flow cytometry and high-dimensional analysis showed that shared-restricted CMV-specific lymphocytes display a more differentiated phenotype and increased persistence than donor-restricted counterparts. In this study, monitoring CMV-specific cells by Dextramer assay after allogeneic HSCT shed light on mechanisms of immune reconstitution and enabled risk stratification of patients, which could improve the clinical management of post-transplant CMV reactivations.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2022
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: European Journal of Immunology, Wiley, Vol. 51, No. 8 ( 2021-08), p. 1992-2005
    Abstract: The phenotype of infused cells is a major determinant of Adoptive T‐cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state‐of‐the‐art and innovative culture conditions to generate stem‐like memory cells (T SCM ) suitable for ACT. Noticeably, the combination of IL‐7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit‐T SCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T‐cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID‐19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.
    Type of Medium: Online Resource
    ISSN: 0014-2980 , 1521-4141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1491907-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Life Science Alliance, Life Science Alliance, LLC, Vol. 5, No. 10 ( 2022-10), p. e202101316-
    Abstract: We describe a multi-step high-dimensional (HD) flow cytometry workflow for the deep phenotypic characterization of T cells infiltrating metastatic tumor lesions in the liver, particularly derived from colorectal cancer (CRC-LM). First, we applied a novel flow cytometer setting approach based on single positive cells rather than fluorescent beads, resulting in optimal sensitivity when compared with previously published protocols. Second, we set up a 26-color based antibody panel designed to assess the functional state of both conventional T-cell subsets and unconventional invariant natural killer T, mucosal associated invariant T, and gamma delta T (γδT)-cell populations, which are abundant in the liver. Third, the dissociation of the CRC-LM samples was accurately tuned to preserve both the viability and antigenic integrity of the stained cells. This combined procedure permitted the optimal capturing of the phenotypic complexity of T cells infiltrating CRC-LM. Hence, this study provides a robust tool for high-dimensional flow cytometry analysis of complex T-cell populations, which could be adapted to characterize other relevant pathological tissues.
    Type of Medium: Online Resource
    ISSN: 2575-1077
    Language: English
    Publisher: Life Science Alliance, LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2948687-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Gut, BMJ, Vol. 72, No. 10 ( 2023-10), p. 1838-1847
    Abstract: Ulcerative colitis (UC) is a chronic inflammatory disorder of unknown aetiology. Gut virome dysbiosis is fundamental in UC progression, although its role in the early phases of the disease is far from fully understood. Therefore, we sought to investigate the role of a virome-associated protein encoded by the Orthohepadnavirus genus, the hepatitis B virus X protein (HBx), in UC aetiopathogenesis. Design HBx positivity of UC patient-derived blood and gut mucosa was assessed by RT-PCR and Sanger sequencing and correlated with clinical characteristics by multivariate analysis. Transcriptomics was performed on HBx-overexpressing endoscopic biopsies from healthy donors. C57BL/6 mice underwent intramucosal injections of liposome-conjugated HBx-encoding plasmids or the control, with or without antibiotic treatment. Multidimensional flow cytometry analysis was performed on colonic samples from HBx-treated and control animals. Transepithelial electrical resistance measurement, proliferation assay, chromatin immunoprecipitation assay with sequencing and RNA-sequencing were performed on in vitro models of the gut barrier. HBx-silencing experiments were performed in vitro and in vivo . Results HBx was detected in about 45% of patients with UC and found to induce colonic inflammation in mice, while its silencing reverted the colitis phenotype in vivo . HBx acted as a transcriptional regulator in epithelial cells, provoking barrier leakage and altering both innate and adaptive mucosal immunity ex vivo and in vivo . Conclusion This study described HBx as a contributor to the UC pathogenesis and provides a new perspective on the virome as a target for tailored treatments.
    Type of Medium: Online Resource
    ISSN: 0017-5749 , 1468-3288
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2023
    detail.hit.zdb_id: 1492637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Gut, BMJ, Vol. 72, No. 10 ( 2023-10), p. 1887-1903
    Abstract: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. Design We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. Results We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCR ED )) and the CD39 encoding gene ( ENTPD1 ), thus generating TCR ED ENTPD1 KO HER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2 + patient-derived organoids in vitro and in vivo . Conclusion HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.
    Type of Medium: Online Resource
    ISSN: 0017-5749 , 1468-3288
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2023
    detail.hit.zdb_id: 1492637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 15 ( 2024-2-29)
    Abstract: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCR ED ) and permanently disrupted LAG3 , TIM-3 or 2B4 genes (IR KO ) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCR ED -IR KO and IR competent (TCR ED -IR COMP ) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro . Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results We show that upon chronic stimulation, TCR ED -IR KO cells are superior to TCR ED -IR COMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo . Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2024
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...