GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oikos, Wiley, Vol. 126, No. 8 ( 2017-07), p. 1101-1111
    Abstract: Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance– covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter.
    Type of Medium: Online Resource
    ISSN: 0030-1299 , 1600-0706
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2025658-9
    detail.hit.zdb_id: 207359-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 2017
    In:  Acta Oecologica Vol. 85 ( 2017-11), p. 150-156
    In: Acta Oecologica, Elsevier BV, Vol. 85 ( 2017-11), p. 150-156
    Type of Medium: Online Resource
    ISSN: 1146-609X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2003658-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Oecologia Vol. 190, No. 2 ( 2019-6), p. 459-469
    In: Oecologia, Springer Science and Business Media LLC, Vol. 190, No. 2 ( 2019-6), p. 459-469
    Type of Medium: Online Resource
    ISSN: 0029-8549 , 1432-1939
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 1462019-4
    detail.hit.zdb_id: 123369-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Ecology and Evolution Vol. 10, No. 14 ( 2020-07), p. 7364-7376
    In: Ecology and Evolution, Wiley, Vol. 10, No. 14 ( 2020-07), p. 7364-7376
    Abstract: Species occurrence in a site can be limited by both the abiotic environment and biotic interactions. These two factors operate in concert, but their relative importance is often unclear. By experimentally introducing seeds or plants into competition‐free gaps or into the intact vegetation, we can disentangle the biotic and abiotic effects on plant establishment. We established a seed‐sowing/transplant experiment in three different meadows. Species were introduced, as seeds and pregrown transplants, into competition‐free gaps and the intact vegetation. They included 12 resident plants from the locality and 18 species typical for different habitats. Last two years, gaps were overgrown with vegetation from surrounding plants and we observed the competitive exclusion of our focal plants. We compared plant survival with the expected occurrence in target locality (Beals index). Many of the species with habitat preferences different from our localities were able to successfully establish from seeds and grow in the focal habitat if competition was removed. They included species typical for much drier conditions. These species were thus not limited by the abiotic conditions, but by competition. Pregrown transplants were less sensitive to competition, when compared to seedlings germinated from seeds. Beals index significantly predicted both species success in gaps and the ability to withstand competition. Survival in a community is dependent on the adaptation to both the abiotic environment and biotic interactions. Statistically significant correlation coefficients of the ratio of seedling survival in vegetation and gaps with Beals index suggest the importance of biotic interactions as a determinant of plant community composition. To disentangle the importance of abiotic and biotic effect on plant establishment, it is important to distinguish between species pool as a set of species typically found in given community type (determined by Beals index) and a set of species for which the abiotic conditions are suitable.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Ecology and Evolution, Wiley, Vol. 8, No. 14 ( 2018-07), p. 7044-7054
    Abstract: In intensively used landscapes, remnant grassland fragments are often restricted to places unsuitable for agricultural cultivation. Such refuges are the ancient burial mounds called “kurgans,” which are typical landscape elements of the Eurasian steppe and forest steppe zone. Due to their hill‐like shape, loose soil structure and undisturbed status kurgans provide proper habitats for burrowing mammals. Accordingly, grassland vegetation on kurgans is often exposed to bioturbation, which can influence the habitat structure and plant species pool. In our study, we explored the effect of fox burrows and landscape context on the habitat properties and vegetation composition of small landscape elements, using kurgans as model habitats. We surveyed the vegetation of fox burrows and that of the surrounding grassland on five kurgans situated in cleared landscapes surrounded by arable lands and five kurgans in complex landscapes surrounded by grazed grasslands. We recorded the percentage cover of vascular plants, the amount of litter, and soil moisture content in twelve 0.5 m × 0.5 m plots per kurgan, in a total of 120 plots. We found that foxes considerably transformed habitat conditions and created microhabitats by changing the soil nutrient availability and reducing total vegetation cover and litter. Several grassland specialist species, mostly grasses ( Agropyron cristatum , Elymus hispidus, and Stipa capillata ) established in the newly created microhabitats, although the cover of noxious species was also considerable. We found that landscape context influenced the sort of species which could establish on kurgans by affecting the available species pool and soil moisture. Our results revealed that foxes act as ecosystem engineers on kurgans by transforming abiotic and biotic conditions by burrowing. Their engineering activity maintains disturbance‐dependent components of dry grasslands and increases local environmental heterogeneity.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Restoration Ecology, Wiley, Vol. 29, No. S1 ( 2021-04)
    Abstract: Sowing of grass seed mixtures is a feasible and cost‐effective method for landscape‐scale grassland restoration. However, sowing only grasses usually leads to species‐poor and dense swards, where the establishment of target forbs is hampered by microsite and propagule limitation. To overcome these limitations and increase the diversity of species‐poor sown grasslands, we developed a novel method by creating “establishment gaps.”. We used tillage to open gaps of 1‐, 4‐, and 16‐m 2 size in the dense grass sward of six species‐poor restored grasslands in the Great Hungarian Plain. We sowed high‐diversity seed mixtures of 35 native species into all gaps. We analyzed vegetation development during the first 5 years after setting up the trial. We also studied the colonization dynamics of the sown species along four 20‐m transects around each gap, resulting in a total of 1440 plots of 1‐m 2 size that were studied. Our results indicated that most of the sown species were able to establish permanently in the gaps. The total cover and the cover of perennial sown species increased and the cover of short‐lived sown species decreased independent of gap size. There was only a moderate level of weed abundance in the gaps, and weed cover decreased over the years. The sown target species started to colonize the species‐poor grasslands surrounding the gaps within 5 years. The highest number of species and individuals dispersed from the 4‐m 2 gaps, as they had a more stable development than smaller gaps and were exposed to lower grazing pressure than large ones.
    Type of Medium: Online Resource
    ISSN: 1061-2971 , 1526-100X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020952-6
    detail.hit.zdb_id: 914746-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...