GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Earth Science Vol. 11 ( 2023-2-8)
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 11 ( 2023-2-8)
    Abstract: Observed extreme sea levels are caused by a combination of extreme astronomical tide and extreme storm surge, or by an extreme value in one of these variables and a moderate value in the other. We analyzed measurements from the Norwegian tide gauge network together with storm track data to assess cases of extreme sea level and storm surges. At most stations the highest storm surges only coincided with moderate astronomical tides and vice versa . Simultaneously the extreme storm surges often only coincided with moderate storm intensities. This opens for the possibility of flooding events, where extreme tides and storm surges co-occur, and which could exceed existing sea level records and national building standards. This study also raises the possibility to assess extreme sea level return values as a three-variable system, treating separately the astronomical tide, storm location and storm intensity, instead of the one- or two-variable approach currently used.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2741235-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Stockholm University Press ; 2021
    In:  Tellus A: Dynamic Meteorology and Oceanography Vol. 73, No. 1 ( 2021-01-01), p. 1886419-
    In: Tellus A: Dynamic Meteorology and Oceanography, Stockholm University Press, Vol. 73, No. 1 ( 2021-01-01), p. 1886419-
    Type of Medium: Online Resource
    ISSN: 1600-0870
    Language: Unknown
    Publisher: Stockholm University Press
    Publication Date: 2021
    detail.hit.zdb_id: 2026987-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Advances in Space Research, Elsevier BV, Vol. 68, No. 2 ( 2021-07), p. 319-363
    Type of Medium: Online Resource
    ISSN: 0273-1177
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2023311-5
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2019
    In:  Scientific Reports Vol. 9, No. 1 ( 2019-01-31)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-01-31)
    Abstract: Regional sea-level rise is characterized by decadal acceleration and deceleration periods that typically stem from oceanic climate variability. Here, we investigate decadal sea-level trends during the altimetry era and pin down the associated ocean circulation changes. We find that decadal subpolar gyre cooling (warming), strengthening (weakening), widening (shrinking) since the mid-2000s (early 1990s) resulted in negative (positive) sea level trends of −7.1 mm/yr ± 1.3 mm/yr (3.9 mm/yr ± 1.5 mm/yr). These large-scale changes further coincide with steric sea-level trends, and are driven by decadal-scale ocean circulation variability. Sea level on the European shelf, however, is found to correlate well with along-slope winds (R = 0.78), suggesting it plays a central role in driving the associated low-frequency dynamic sea level variability. Furthermore, when the North Atlantic is in a cooling (warming) period, the winds along the eastern boundary are predominantly from the North (South), which jointly drive a slowdown (rapid increase) in shelf and coastal sea level rise. Understanding the mechanisms that produce these connections may be critical for interpreting future regional sea-level trends.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Operational Oceanography, Informa UK Limited, Vol. 14, No. sup1 ( 2021-08-20), p. 1-185
    Type of Medium: Online Resource
    ISSN: 1755-876X , 1755-8778
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2428097-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Journal of Marine Science and Engineering Vol. 9, No. 9 ( 2021-08-26), p. 924-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 9, No. 9 ( 2021-08-26), p. 924-
    Abstract: Atmospheric forcing and climate modes of variability on various timescales are important drivers of sea level variability. However, the influence of such drivers on sea level variability along the South African east and south coast has not yet been adequately investigated. Here, we determine the timescales of sea level variability and their relationships with various drivers. Empirical Mode Decomposition (EMD) was applied to seven tide gauge records and potential forcing data for this purpose. The oscillatory modes identified by the EMD were summed to obtain physically more meaningful timescales—specifically, the sub-annual (less than 18 months) and interannual (greater than two years) scales. On the sub-annual scale, sea level responds to regional zonal and meridional winds associated with mesoscale and synoptic weather disturbances. Ekman dynamics resulting from variability in sea level pressure and alongshore winds are important for the coastal sea level on this timescale. On interannual timescales, there were connections with ENSO, the Indian Ocean Dipole (IOD) and the Southern Annular Mode (SAM), although the results are not consistent across all the tide gauge stations and are not particularly strong. In general, El Niño and positive IOD events are coincident with high coastal sea levels and vice versa, whereas there appears to be an inverse relationship between SAM phase and sea level.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Advances in Geosciences, Copernicus GmbH, Vol. 46 ( 2019-01-17), p. 1-10
    Abstract: Abstract. The European Climate Research Alliance (ECRA) is an association of leading European research institutions in the field of climate research (http://www.ecra-climate.eu/, last access: 6 December 2018). ECRA is a bottom-up initiative and helps to facilitate the development of climate change research, combining the capacities of national research institutions, and inducing closer ties between existing national research initiatives, projects and infrastructures. ECRA works as an open platform to bring together climate researchers, providing excellent scientific expertise for policy makers and of societal relevance. The ECRA Board consists of representatives of ECRA partners and decides on governance, scientific priorities, and organisational matters. Currently organized into four Collaborative Programmes, climate scientists share their knowledge, experience and expertise to identify the most important research requirements for the future, thus developing a foresight approach. The CPs cover the topics: (1) Arctic variability and change, (2) Sea level changes and coastal impacts, (3) Changes in the hydrological cycle and (4) High impact events. The CP activities are planned in workshops and participation is open to all interested scientists from the relevant research fields. In particular, young researchers are actively encouraged to join the network. Each CP develops its joint research priorities for shaping European research into the future. Because scientific themes are interconnected, the four Collaborative Programmes interact with each other, e.g. through the organization of common workshops or joint applications. In addition, the Collaborative Programme leads attend the Board meetings. The different formats of ECRA meetings range from scientific workshops to briefing events and side events at conferences to involve different groups of interests. This facilitates the interaction of scientists, various stakeholder groups and politicians. A biennial open ECRA General Assembly that is organised in Brussels represents an umbrella event and acts as a platform for discussion and contact with stakeholders. This event is an excellent opportunity to jointly discuss research priorities of high societal relevance.
    Type of Medium: Online Resource
    ISSN: 1680-7359
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2625759-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Earth System Science Data, Copernicus GmbH, Vol. 14, No. 2 ( 2022-02-07), p. 411-447
    Abstract: Abstract. Studies of the global sea-level budget (SLB) and the global ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributors. Here we present datasets for times series of the SLB and OMB elements developed in the framework of ESA's Climate Change Initiative. We use these datasets to assess the SLB and the OMB simultaneously, utilising a consistent framework of uncertainty characterisation. The time series, given at monthly sampling and available at https://doi.org/10.5285/17c2ce31784048de93996275ee976fff (Horwath et al., 2021), include global mean sea-level (GMSL) anomalies from satellite altimetry, the global mean steric component from Argo drifter data with incorporation of sea surface temperature data, the ocean-mass component from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry, the contribution from global glacier mass changes assessed by a global glacier model, the contribution from Greenland Ice Sheet and Antarctic Ice Sheet mass changes assessed by satellite radar altimetry and by GRACE, and the contribution from land water storage anomalies assessed by the global hydrological model WaterGAP (Water Global Assessment and Prognosis). Over the period January 1993–December 2016 (P1, covered by the satellite altimetry records), the mean rate (linear trend) of GMSL is 3.05 ± 0.24 mm yr−1. The steric component is 1.15 ± 0.12 mm yr−1 (38 % of the GMSL trend), and the mass component is 1.75 ± 0.12 mm yr−1 (57 %). The mass component includes 0.64  ± 0.03 mm yr−1 (21 % of the GMSL trend) from glaciers outside Greenland and Antarctica, 0.60 ± 0.04 mm yr−1 (20 %) from Greenland, 0.19 ± 0.04 mm yr−1 (6 %) from Antarctica, and 0.32 ± 0.10 mm yr−1 (10 %) from changes of land water storage. In the period January 2003–August 2016 (P2, covered by GRACE and the Argo drifter system), GMSL rise is higher than in P1 at 3.64 ± 0.26 mm yr−1. This is due to an increase of the mass contributions, now about 2.40 ± 0.13 mm yr−1 (66 % of the GMSL trend), with the largest increase contributed from Greenland, while the steric contribution remained similar at 1.19 ± 0.17 mm yr−1 (now 33 %). The SLB of linear trends is closed for P1 and P2; that is, the GMSL trend agrees with the sum of the steric and mass components within their combined uncertainties. The OMB, which can be evaluated only for P2, shows that our preferred GRACE-based estimate of the ocean-mass trend agrees with the sum of mass contributions within 1.5 times or 0.8 times the combined 1σ uncertainties, depending on the way of assessing the mass contributions. Combined uncertainties (1σ) of the elements involved in the budgets are between 0.29 and 0.42 mm yr−1, on the order of 10 % of GMSL rise. Interannual variations that overlie the long-term trends are coherently represented by the elements of the SLB and the OMB. Even at the level of monthly anomalies the budgets are closed within uncertainties, while also indicating possible origins of remaining misclosures.
    Type of Medium: Online Resource
    ISSN: 1866-3516
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2475469-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Informa UK Limited ; 1996
    In:  Sarsia Vol. 81, No. 3 ( 1996-10-15), p. 193-196
    In: Sarsia, Informa UK Limited, Vol. 81, No. 3 ( 1996-10-15), p. 193-196
    Type of Medium: Online Resource
    ISSN: 0036-4827
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 1996
    detail.hit.zdb_id: 2073536-4
    detail.hit.zdb_id: 203231-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 23 ( 2017-12), p. 9383-9398
    Abstract: The northern North Atlantic comprises a dynamically complex area with distinct topographic features, making it challenging to model oceanic features with global climate models. As climate models form the basis for assessment reports of future regional sea level rise, model evaluation is important. In this study, the representation of regional sea level in this area is evaluated in 18 climate models that contributed to phase 5 of the Coupled Model Intercomparison Project. Modeled regional dynamic height is compared to observations from an altimetry-based record over the period 1993–2012 in terms of mean dynamic topography, interannual variability, and linear trend patterns. As models are expected to reproduce the location and magnitude but not the timing of internal variability, the observations are compared to the full 150-yr historical simulations using 20-yr time slices. This approach allows one to examine modeled natural variability versus observed changes and to assess whether a forced signal is detectable over the 20-yr record or whether the observed changes can be explained by internal variability. The models perform well with respect to mean dynamic topography. However, model performances degrade when interannual variability and linear trend patterns are considered. The modeled regionwide average steric and dynamic sea level rise is larger than estimated from observations, and the marked observed increase in the subpolar gyre is not consistent with a forced response but rather a result of internal variability. Using a simple weighting scheme, it is shown that the results can be used to reduce uncertainties in sea level projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...