GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 60, No. 5 ( 2011), p. 056104-
    Abstract: The influence of nitrogen implantation on the properties of silicon-on-insulator buried oxide using separation by oxygen implantation was studied. Nitrogen ions were implanted into the buried oxide layer with a high-dose of 1016 cm-2. The experimental results showed that the positive charge density of the nitrogen-implanted buried oxide was obviously increased, compared with the control sampes without nitrogen implantation. It was also found that the post-implantation annealing caused an additional increase of the positive charge density in the nitrogen implanted samples. However, annealing time displayed a small effect on the positive charge density of the nitrogen implanted buried oxide, compared with the significant increase induced by nitrogen implantation. Moreover, the capacitance-voltage results showed that the positive charge density of the unannealed sample with nitrogen implanted is approximately equal to that of the sample annealed at 1100 ℃ for 2.5 h in N2 ambient, despite an additional increase brought with annealing, and the buried oxide of the sample after 0.5 h annealing has a maximum value of positive charge density. According to the simulating results, the nitrogen implantation resulted in a heavy damage to the buried oxide, a lot of silicon and oxygen vacancies were introduced in the buried oxide during implantation. However, the Fourier transform infrared spectroscopy of the samples indicates that implantation induced defects can be basically eliminated after an annealing at 1100 ℃ for 0.5 h. The increase of the positive charge density of the nitrogen implanted buried oxide is ascribed to the accumulation of implanted nitrogen near the interface of buried oxide and silicon, which caused the break of weak Si-Si bonds and the production of positive silicon ions in the silicon-rich region of the buried oxide near the interface, and this conclusion is supported by the results of secondary ion mass spectrometry.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2011
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...