GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 136, No. 11 ( 2013-11-01), p. 3395-3407
    Materialart: Online-Ressource
    ISSN: 1460-2156 , 0006-8950
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2013
    ZDB Id: 1474117-9
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Physical Society (APS) ; 2021
    In:  Physical Review A Vol. 103, No. 1 ( 2021-1-12)
    In: Physical Review A, American Physical Society (APS), Vol. 103, No. 1 ( 2021-1-12)
    Materialart: Online-Ressource
    ISSN: 2469-9926 , 2469-9934
    RVK:
    Sprache: Englisch
    Verlag: American Physical Society (APS)
    Publikationsdatum: 2021
    ZDB Id: 2844156-4
    ZDB Id: 209769-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Faraday Discussions, Royal Society of Chemistry (RSC), Vol. 224 ( 2020), p. 483-508
    Materialart: Online-Ressource
    ISSN: 1359-6640 , 1364-5498
    Sprache: Englisch
    Verlag: Royal Society of Chemistry (RSC)
    Publikationsdatum: 2020
    ZDB Id: 1472891-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2017
    In:  The Journal of Chemical Physics Vol. 146, No. 6 ( 2017-02-14)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 146, No. 6 ( 2017-02-14)
    Kurzfassung: The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi’s golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction’s Green’s function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2017
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2017
    In:  The Journal of Chemical Physics Vol. 147, No. 20 ( 2017-11-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 147, No. 20 ( 2017-11-28)
    Kurzfassung: The extrapolation technique of Savin [J. Chem. Phys. 140, 18A509 (2014)], which was initially applied to range-separated ground-state-density-functional Hamiltonians, is adapted in this work to ghost-interaction-corrected (GIC) range-separated ensemble density-functional theory (eDFT) for excited states. While standard extrapolations rely on energies that decay as μ−2 in the large range-separation-parameter μ limit, we show analytically that (approximate) range-separated GIC ensemble energies converge more rapidly (as μ−3) towards their pure wavefunction theory values (μ → +∞ limit), thus requiring a different extrapolation correction. The purpose of such a correction is to further improve on the convergence and, consequently, to obtain more accurate excitation energies for a finite (and, in practice, relatively small) μ value. As a proof of concept, we apply the extrapolation method to He and small molecular systems (viz., H2, HeH+, and LiH), thus considering different types of excitations such as Rydberg, charge transfer, and double excitations. Potential energy profiles of the first three and four singlet Σ+ excitation energies in HeH+ and H2, respectively, are studied with a particular focus on avoided crossings for the latter. Finally, the extraction of individual state energies from the ensemble energy is discussed in the context of range-separated eDFT, as a perspective.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2017
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2011
    In:  The Journal of Chemical Physics Vol. 135, No. 24 ( 2011-12-28)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 135, No. 24 ( 2011-12-28)
    Kurzfassung: A two-parameter extension of the density-scaled double hybrid approach of Sharkas et al. [J. Chem. Phys. 134, 064113 (2011)] is presented. It is based on the explicit treatment of a fraction of multideterminantal exact exchange. The connection with conventional double hybrids is made when neglecting density scaling in the correlation functional as well as second-order corrections to the density. In this context, the fraction ac of second-order Møller-Plesset (MP2) correlation energy is not necessarily equal to the square of the fraction ax of Hartree-Fock exchange. More specifically, it is shown that \documentclass[12pt] {minimal}\begin{document}$a_{\rm c}\le a^2_{\rm x}$\end{document}ac≤ax2, a condition that conventional semi-empirical double hybrids actually fulfill. In addition, a new procedure for calculating the orbitals, which has a better justification than the one routinely used, is proposed. Referred to as λ1 variant, the corresponding double hybrid approximation has been tested on a small set consisting of H2, N2, Be2, Mg2, and Ar2. Three conventional double hybrids (B2-PLYP, B2GP-PLYP, and PBE0-DH) have been considered. Potential curves obtained with λ1- and regular double hybrids can, in some cases, differ significantly. In particular, for the weakly bound dimers, the λ1 variants bind systematically more than the regular ones, which is an improvement in many but not all cases. Including density scaling in the correlation functionals may of course change the results significantly. Moreover, optimized effective potentials based on a partially-interacting system could also be used to generate proper orbitals. Work is currently in progress in those directions.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2011
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 131, No. 5 ( 2009-08-07)
    Kurzfassung: In a previous paper [Fromager et al., J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the μ parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field short-range density-functional theory (MC-srDFT) methods. For general modeling with MC-srDFT methods, it is clearly desirable that the same universal value of μ can be used for any molecule. Their calculations on neutral light element compounds all yielded μopt=0.4 a.u. In this work the authors investigate the universality of this value by considering “extreme” study cases, namely, neutral and charged isoelectronic f0 actinide compounds (ThO2, PaO2+, UO22+, UN2, CUO, and NpO23+). We find for these compounds that μopt=0.3 a.u. but show that 0.4 a.u. is still acceptable. This is a promising result in the investigation of a universal range separation. The accuracy of the currently best MC-srDFT (μ=0.3 a.u.) approach has also been tested for equilibrium geometries. Though it performs as well as wave function theory and DFT for static-correlation-free systems, it fails in describing the neptunyl (VII) ion NpO23+ where static correlation is significant; bending is preferred at the MC-srDFT (μ=0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending tendencies observed in DFT for NpO23+ cannot be fully explained by the bad description of static correlation effects by standard functionals. A better description of the exchange seems to be essential too.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2009
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2020
    In:  The Journal of Chemical Physics Vol. 152, No. 21 ( 2020-06-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 152, No. 21 ( 2020-06-07)
    Kurzfassung: We report a local, weight-dependent correlation density-functional approximation that incorporates information about both ground and excited states in the context of density functional theory for ensembles (eDFT). This density-functional approximation for ensembles is specially designed for the computation of single and double excitations within Gross–Oliveira–Kohn DFT (i.e., eDFT for neutral excitations) and can be seen as a natural extension of the ubiquitous local-density approximation in the context of ensembles. The resulting density-functional approximation, based on both finite and infinite uniform electron gas models, automatically incorporates the infamous derivative discontinuity contributions to the excitation energies through its explicit ensemble weight dependence. Its accuracy is illustrated by computing single and double excitations in one-dimensional (1D) many-electron systems in the weak, intermediate, and strong correlation regimes. Although the present weight-dependent functional has been specifically designed for 1D systems, the methodology proposed here is general, i.e., directly applicable to the construction of weight-dependent functionals for realistic three-dimensional systems, such as molecules and solids.
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2020
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    AIP Publishing ; 2022
    In:  The Journal of Chemical Physics Vol. 157, No. 21 ( 2022-12-07)
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 157, No. 21 ( 2022-12-07)
    Kurzfassung: Recently, some of the authors introduced the use of the Householder transformation as a simple and intuitive method for embedding local molecular fragments [see Sekaran et al., Phys. Rev. B 104, 035121 (2021) and Sekaran et al., Computation 10, 45 (2022)]. In this work, we present an extension of this approach to the more general case of multi-orbital fragments using the block version of the Householder transformation applied to the one-body reduced density matrix, unlocking the applicability to general quantum chemistry/condensed matter physics Hamiltonians. A step-by-step construction of the block Householder transformation is presented. Both physical and numerical areas of interest of the approach are highlighted. The specific mean-field (noninteracting) case is thoroughly detailed as it is shown that the embedding of a given N spin–orbital fragment leads to the generation of two separated sub-systems: (1) a 2N spin–orbitals “fragment+bath” cluster that exactly contains N electrons and (2) a remaining cluster’s “environment” described by so-called core electrons. We illustrate the use of this transformation in different cases of embedding scheme for practical applications. We particularly focus on the extension of the previously introduced Local Potential Functional Embedding Theory and Householder-transformed Density Matrix Functional Embedding Theory to the case of multi-orbital fragments. These calculations are realized on different types of systems, such as model Hamiltonians (Hubbard rings) and ab initio molecular systems (hydrogen rings).
    Materialart: Online-Ressource
    ISSN: 0021-9606 , 1089-7690
    Sprache: Englisch
    Verlag: AIP Publishing
    Publikationsdatum: 2022
    ZDB Id: 3113-6
    ZDB Id: 1473050-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2018
    In:  The European Physical Journal B Vol. 91, No. 7 ( 2018-7)
    In: The European Physical Journal B, Springer Science and Business Media LLC, Vol. 91, No. 7 ( 2018-7)
    Materialart: Online-Ressource
    ISSN: 1434-6028 , 1434-6036
    RVK:
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2018
    ZDB Id: 1459068-2
    ZDB Id: 1397768-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...