GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Infection and Immunity, American Society for Microbiology, Vol. 84, No. 3 ( 2016-03), p. 677-685
    Kurzfassung: Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax . In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum , Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2016
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2019
    In:  Malaria Journal Vol. 18, No. 1 ( 2019-12)
    In: Malaria Journal, Springer Science and Business Media LLC, Vol. 18, No. 1 ( 2019-12)
    Materialart: Online-Ressource
    ISSN: 1475-2875
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2019
    ZDB Id: 2091229-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2021
    In:  Malaria Journal Vol. 20, No. 1 ( 2021-12)
    In: Malaria Journal, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2021-12)
    Kurzfassung: Plasmodium vivax is the most prevalent malaria parasite in many countries. A better understanding of human immunity to this parasite can provide new insights for vaccine development. Plasmodium vivax Reticulocyte Binding Proteins (RBPs) are key parasite proteins that interact with human proteins during erythrocyte invasion and are targets of the human immune response. The aim of this study is to characterize the human antibody response to RBP2P1, the most recently described member of the RBP family. Methods The levels of total IgG and IgM against RBP2P1 were measured using plasmas from 68 P. vivax malaria patients and 525 villagers in a malarious village of western Thailand. The latter group comprises asymptomatic carriers and healthy uninfected individuals. Subsets of plasma samples were evaluated for anti-RBP2P1 IgG subtypes and complement-fixing activity. Results As age increased, it was found that the level of anti-RBP2P1 IgG increased while the level of IgM decreased. The main anti-RBP2P1 IgG subtypes were IgG1 and IgG3. The IgG3-seropositive rate was higher in asymptomatic carriers than in patients. The higher level of IgG3 was correlated with higher in vitro RBP2P1-mediated complement fixing activity. Conclusions In natural infection, the primary IgG response to RBP2P1 was IgG1 and IgG3. The predominance of these cytophilic subtypes and the elevated level of IgG3 correlating with complement fixing activity, suggest a possible role of anti-RBP2P1 antibodies in immunity against P. vivax .
    Materialart: Online-Ressource
    ISSN: 1475-2875
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2021
    ZDB Id: 2091229-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Infection and Immunity, American Society for Microbiology, Vol. 88, No. 4 ( 2020-03-23)
    Kurzfassung: The interactions between Plasmodium parasites and human erythrocytes are prime targets of blood stage malaria vaccine development. The reticulocyte binding protein 2-P1 (RBP2-P1) of Plasmodium vivax , a member of the reticulocyte binding protein family, has recently been shown to be highly antigenic in several settings endemic for malaria. Yet, its functional characteristics and the relevance of its antibody response in human malaria have not been examined. In this study, the potential function of RBP2-P1 as an invasion ligand of P. vivax was evaluated. The protein was found to be expressed in schizonts, be localized at the apical end of the merozoite, and preferentially bind reticulocytes over normocytes. Human antibodies to this protein also exhibit erythrocyte binding inhibition at physiologically relevant concentrations. Furthermore, RBP2-P1 antibodies are associated with lower parasitemia and tend to be higher in asymptomatic carriers than in patients. This study provides evidence supporting a role of RBP2-P1 as an invasion ligand and its consideration as a vaccine target.
    Materialart: Online-Ressource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2020
    ZDB Id: 1483247-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Nucleic Acids Research, Oxford University Press (OUP), Vol. 51, No. 8 ( 2023-05-08), p. 3918-3933
    Kurzfassung: DNA modifications are critical in fine-tuning the biological processes in model organisms. However, the presence of cytosine methylation (5mC) and the function of the putative DNA methyltransferase, PfDNMT2, in the human malaria pathogen, Plasmodium falciparum, remain controversial. Here, we revisited the 5mC in the parasite genome and the function of PfDNMT2. Low levels of genomic 5mC (0.1–0.2%) during asexual development were identified using a sensitive mass spectrometry procedure. Native PfDNMT2 displayed substantial DNA methylation activities, and disruption or overexpression of PfDNMT2 resulted in reduced or elevated genomic 5mC levels, respectively. PfDNMT2 disruption led to an increased proliferation phenotype, with the parasites having an extended schizont stage and producing a higher number of progenies. Consistent with PfDNMT2’s interaction with an AP2 domain-containing transcription factor, transcriptomic analyses revealed that PfDNMT2 disruption led to a drastic alteration in the expression of many genes, some of which provided the molecular basis of enhanced proliferation after PfDNMT2 disruption. Furthermore, levels of tRNAAsp and its methylation rate at position C38, and the translation of a reporter containing an aspartate repeat were significantly reduced after PfDNMT2 disruption, while the levels of tRNAAsp and its C38 methylation were restored after complementation of PfDNMT2. Our study sheds new light on the dual function of PfDNMT2 during P. falciparum asexual development.
    Materialart: Online-Ressource
    ISSN: 0305-1048 , 1362-4962
    RVK:
    Sprache: Englisch
    Verlag: Oxford University Press (OUP)
    Publikationsdatum: 2023
    ZDB Id: 1472175-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Asian Pacific Organization for Cancer Prevention ; 2014
    In:  Asian Pacific Journal of Cancer Prevention Vol. 15, No. 15 ( 2014-08-15), p. 6065-6070
    In: Asian Pacific Journal of Cancer Prevention, Asian Pacific Organization for Cancer Prevention, Vol. 15, No. 15 ( 2014-08-15), p. 6065-6070
    Materialart: Online-Ressource
    ISSN: 1513-7368
    Sprache: Englisch
    Verlag: Asian Pacific Organization for Cancer Prevention
    Publikationsdatum: 2014
    ZDB Id: 2218955-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology
    Kurzfassung: Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5’s function in stress responses in P. falciparum . The protein level of PfGCN5 was substantially induced under three stress conditions [heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)]. With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ~50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ~1,000 up- and down-regulated genes in the wild-type (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin . Based on the expression pattern between WT and KD parasites under three stress conditions, ~300–400 genes were identified to be involved in PfGCN5-dependent, general, and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay, we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention.
    Materialart: Online-Ressource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Sprache: Englisch
    Verlag: American Society for Microbiology
    Publikationsdatum: 2023
    ZDB Id: 1496156-8
    SSG: 12
    SSG: 15,3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...